ﻻ يوجد ملخص باللغة العربية
A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.
We study extended infection fronts advancing over a spatially uniform susceptible population by solving numerically a diffusive Kermack McKendrick SIR model with a dichotomous spatially random transmission rate, in two dimensions. We find a non-trivi
We discuss memory effects in the conductance of hopping insulators due to slow rearrangements of many-electron clusters leading to formation of polarons close to the electron hopping sites. An abrupt change in the gate voltage and corresponding shift
Structure of eigenstates in a periodic quasi-1D waveguide with a rough surface is studied both analytically and numerically. We have found a large number of regular eigenstates for any high energy. They result in a very slow convergence to the classi
In this paper we investigate how gradient-based algorithms such as gradient descent, (multi-pass) stochastic gradient descent, its persistent variant, and the Langevin algorithm navigate non-convex loss-landscapes and which of them is able to reach t
Surface effects become important in microfluidic setups because the surface to volume ratio becomes large. In such setups the surface roughness is not any longer small compared to the length scale of the system and the wetting properties of the wall