ﻻ يوجد ملخص باللغة العربية
We study extended infection fronts advancing over a spatially uniform susceptible population by solving numerically a diffusive Kermack McKendrick SIR model with a dichotomous spatially random transmission rate, in two dimensions. We find a non-trivial dynamic critical behavior in the mean velocity, in the shape, and in the rough geometry of the displacement field of the infective front as the disorder approaches a threshold value for spatial spreading of the infection.
We study the propagation of waves in a medium in which the wave velocity fluctuates randomly in time. We prove that at long times, the statistical distribution of the wave energy is log-normal, with the average energy growing exponentially. For weak
We applied finite difference time domain (FDTD) algorithm to the study of field and intensity correlations in random media. Close to the onset of Anderson localization, we observe deviations of the correlation functions, in both shape and magnitude,
We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave as $V sim T^psi$, wi
A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simu
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter i