ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning of magnetic and electronic states by control of oxygen content in lanthanum strontium cobaltites

89   0   0.0 ( 0 )
 نشر من قبل Stanislaw Kolesnik
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the magnetic, resistive, and structural studies of perovskite La$_{1/3}$Sr$_{2/3}$CoO$_{3-delta}$. By using the relation of synthesis temperature and oxygen partial pressure to oxygen stoichiometry obtained from thermogravimetric analysis, we have synthesized a series of samples with precisely controlled $delta=0.00-0.49$. These samples show three structural phases at $delta=0.00-0.15$, $approx0.25$, $approx0.5$, and two-phase behavior for other oxygen contents. The stoichiometric material with $delta=0.00$ is a cubic ferromagnetic metal with the Curie temperature $T_{rm C}=274$ K. The increase of $delta$ to 0.15 is followed by a linear decrease of $T_{rm C}$ to $approx$ 160 K and a metal-insulator transition near the boundary of the cubic structure range. Further increase of $delta$ results in formation of a tetragonal $2a_ptimes 2a_p times 4a_p$ phase for $deltaapprox 0.25$ and a brownmillerite phase for $deltaapprox0.5$. At low temperatures, these are weak ferromagnetic insulators (canted antiferromagnets) with magnetic transitions at $T_{rm m}approx230$ and 120 K, respectively. At higher temperatures, the $2a_ptimes 2a_p times 4a_p$ phase is $G$-type antiferromagnetic between 230 K and $approx$360 K. Low temperature magnetic properties of this system for $delta<1/3$ can be described in terms of a mixture of Co$^{3+}$ ions in the low-spin state and Co$^{4+}$ ions in the intermediate-spin state and a possible spin transition of Co$^{3+}$ to the intermediate-spin state above $T_{rm C}$. For $delta>1/3$, there appears to be a combination of Co$^{2+}$ and Co$^{3+}$ ions, both in the high-spin state with dominating antiferromagnetic interactions.



قيم البحث

اقرأ أيضاً

133 - Walter A. Harrison 2008
An earlier analysis of manganese oxides in various charge states indicated that free-atom term values and universal coupling gave a reasonable account of the cohesion. This approach is here extended to LaxSr(1-x)MnO3 in a perovskite structure, and a wide range of properties, with comparable success, including the cohesion, as a function of x. Magnetic and electronic properties are treated in terms of the same parameters and the cluster orbitals used for cohesion. This includes an estimate of the Neel and Curie-Weiss temperatures for SrMnO3, an antiferromagnetic insulator, and the magnitude of a Jahn-Teller distortion in LaMnO3 which makes it also insulating with (100) ferromagnetic planes (due to a novel double-exchange for the distorted state), antiferromagnetically stacked, as observed. We estimate the Neel temperature and its volume dependence, and the ferromagnetic Curie-Weiss temperature which applies between the Neel and Jahn-Teller temperatures. We expect hopping conductivity when there is doping (0<x<1) and estimate it in the context of small-polaron theory. It is in accord with experiment between the Neel and Jahn-Teller temperatures, but below the Neel temperature the conduction appears to be band-like, for which we estimate a hole mass as enhanced in large-polaron theory. We see that above the Jahn-Teller temperature LaMnO3 should be metallic as observed, and paramagnetic with a ferromagnetic Curie-Weiss constant which we estimate. Many of these predictions are not so accurate, but are sufficiently close to provide a clear understanding of all of these properties in terms of a simple theory and parameters known at the outset. We provide also these parameters for Fe, Co, and Ca so that formulae for the properties can readily be evaluated for similar systems.
The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that th e structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C-C dimer pair accompanied by stronger C-C and weaker C-Ti hybridizations as the C-C distance becomes smaller. As the C-C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.
269 - Walter A. Harrison 2009
A localized description, rather than energy bands, is appropriate for the manganite substrate. Empty substrate levels lower in energy than occupied oxygen levels indicate need for further terms beyond the Local Density Approximation. So also does van -der-Waals interaction between the two. Methods to include both are suggested by related, exactly soluble, two-electron problems. The descriptions of the electronic structure of the molecule and a LaSrMnO3 (LSM) substrate are greatly simplified to allow incorporation of these effects and to treat a range of problems involving the interactions between oxygen atoms, or oxygen molecules, and such a substrate. These include elastic impacts, impacts with electronic transitions, and impacts with phonon excitation. They provide for capture of the atoms or molecules by the surface, leaving the neutral molecule strongly bound over a Mn(4+) site. It is found that oxygen vacancies in LSM diffuse as a neutral species, and can appear at the surface. Bound molecules tend to avoid sites next to vacancies but, if there, should drop one atom into the vacancy leaving the remaining triplet oxygen atom bound to the resulting ideal surface, with no need for spin flips nor successive ionization steps.
The ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced tempe ratures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoOx) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ~30%, resulting in a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.
Huge deformations of the crystal lattice can be achieved in materials with inherent structural instability by epitaxial straining. By coherent growth on seven different substrates the in-plane lattice constants of 50 nm thick Fe70Pd30 films are conti nuously varied. The maximum epitaxial strain reaches 8,3 % relative to the fcc lattice. The in-plane lattice strain results in a remarkable tetragonal distortion ranging from c/abct = 1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. This has dramatic consequences for the magnetic key properties. Magnetometry and X-ray circular dichroism (XMCD) measurements show that Curie temperature, orbital magnetic moment, and magnetocrystalline anisotropy are tuned over broad ranges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا