ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization of electronic states in amorphous materials: recursive Greens function method and the metal-insulator transition at E<>0

123   0   0.0 ( 0 )
 نشر من قبل Rudolf A. Roemer
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we will investigate whether the scaling assumptions made in previous studies for the transition at energies outside the band centre can be reconfirmed in numerical calculations, and in particular whether the conductivity sigma follows a power law close to the critical energy E_c. For this purpose we will use the recursive Greens function method to calculate the four-terminal conductance of a disordered system for fixed disorder strength at temperature T=0. Applying the finite-size scaling analysis we will compute the critical exponent and determine the mobility edge, i.e. the MIT outside the band centre.



قيم البحث

اقرأ أيضاً

292 - W. Zhu , Q. W. Shi , J. G. Hou 2010
The puzzle of recently observed insulating phase of graphene at filling factor $ u=0$ in high magnetic field quantum Hall (QH) experiments is investigated. We show that the magnetic field driven Peierls-type lattice distortion (due to the Landau leve l degeneracy) and random bond fluctuations compete with each other, resulting in a transition from a QH-metal state at relative low field to a QH-insulator state at high enough field at $ u=0$. The critical field that separates QH-metal from QH-insulator depends on the bond fluctuation. The picture explains well why the field required for observing the insulating phase is lower for a cleaner sample.
We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF ex ponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.
110 - Stefan Kettemann 2016
We consider the orthogonality catastrophe at the Anderson Metal-Insulator transition (AMIT). The typical overlap $F$ between the ground state of a Fermi liquid and the one of the same system with an added potential impurity is found to decay at the A MIT exponentially with system size $L$ as $F sim exp (- langle I_Arangle /2)= exp(-c L^{eta})$, where $I_A$ is the so called Anderson integral, $eta $ is the power of multifractal intensity correlations and $langle ... rangle$ denotes the ensemble average. Thus, strong disorder typically increases the sensitivity of a system to an additional impurity exponentially. We recover on the metallic side of the transition Andersons result that fidelity $F$ decays with a power law $F sim L^{-q (E_F)}$ with system size $L$. This power increases as Fermi energy $E_F$ approaches mobility edge $E_M$ as $q (E_F) sim (frac{E_F-E_M}{E_M})^{- u eta},$ where $ u$ is the critical exponent of correlation length $xi_c$. On the insulating side of the transition $F$ is constant for system sizes exceeding localization length $xi$. While these results are obtained from the mean value of $I_A,$ giving the typical fidelity $F$, we find that $I_A$ is widely, log normally, distributed with a width diverging at the AMIT. As a consequence, the mean value of fidelity $F$ converges to one at the AMIT, in strong contrast to its typical value which converges to zero exponentially fast with system size $L$. This counterintuitive behavior is explained as a manifestation of multifractality at the AMIT.
We investigate boundary multifractality of critical wave functions at the Anderson metal-insulator transition in two-dimensional disordered non-interacting electron systems with spin-orbit scattering. We show numerically that multifractal exponents a t a corner with an opening angle theta=3pi/2 are directly related to those near a straight boundary in the way dictated by conformal symmetry. This result extends our previous numerical results on corner multifractality obtained for theta < pi to theta > pi, and gives further supporting evidence for conformal invariance at criticality. We also propose a refinement of the validity of the symmetry relation of A. D. Mirlin et al., Phys. Rev. Lett. textbf{97} (2006) 046803, for corners.
160 - Alon Beck , Moshe Goldstein 2020
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work we shed light on this issue by studying the effect of disorder on recently-introduced dissipation-induced Chern topological states, and examining the eigenmodes of the Hermitian steady state density matrix or entanglement Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its center. However, using three different finite size scaling methods we show that the critical exponent $ u$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics. This indicates a different type of nonequilibrium quantum critical universality class accessible in cold-atom experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا