ترغب بنشر مسار تعليمي؟ اضغط هنا

Corner Multifractality for Reflex Angles and Conformal Invariance at 2D Anderson Metal-Insulator Transition with Spin-Orbit Scattering

159   0   0.0 ( 0 )
 نشر من قبل Hideaki Obuse
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate boundary multifractality of critical wave functions at the Anderson metal-insulator transition in two-dimensional disordered non-interacting electron systems with spin-orbit scattering. We show numerically that multifractal exponents at a corner with an opening angle theta=3pi/2 are directly related to those near a straight boundary in the way dictated by conformal symmetry. This result extends our previous numerical results on corner multifractality obtained for theta < pi to theta > pi, and gives further supporting evidence for conformal invariance at criticality. We also propose a refinement of the validity of the symmetry relation of A. D. Mirlin et al., Phys. Rev. Lett. textbf{97} (2006) 046803, for corners.



قيم البحث

اقرأ أيضاً

We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF ex ponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.
110 - Stefan Kettemann 2016
We consider the orthogonality catastrophe at the Anderson Metal-Insulator transition (AMIT). The typical overlap $F$ between the ground state of a Fermi liquid and the one of the same system with an added potential impurity is found to decay at the A MIT exponentially with system size $L$ as $F sim exp (- langle I_Arangle /2)= exp(-c L^{eta})$, where $I_A$ is the so called Anderson integral, $eta $ is the power of multifractal intensity correlations and $langle ... rangle$ denotes the ensemble average. Thus, strong disorder typically increases the sensitivity of a system to an additional impurity exponentially. We recover on the metallic side of the transition Andersons result that fidelity $F$ decays with a power law $F sim L^{-q (E_F)}$ with system size $L$. This power increases as Fermi energy $E_F$ approaches mobility edge $E_M$ as $q (E_F) sim (frac{E_F-E_M}{E_M})^{- u eta},$ where $ u$ is the critical exponent of correlation length $xi_c$. On the insulating side of the transition $F$ is constant for system sizes exceeding localization length $xi$. While these results are obtained from the mean value of $I_A,$ giving the typical fidelity $F$, we find that $I_A$ is widely, log normally, distributed with a width diverging at the AMIT. As a consequence, the mean value of fidelity $F$ converges to one at the AMIT, in strong contrast to its typical value which converges to zero exponentially fast with system size $L$. This counterintuitive behavior is explained as a manifestation of multifractality at the AMIT.
Generalized multifractality characterizes scaling of eigenstate observables at Anderson-localization critical points. We explore generalized multifractality in 2D systems, with the main focus on the spin quantum Hall (SQH) transition in superconducto rs of symmetry class C. Relations and differences with the conventional integer quantum Hall (IQH) transition are also studied. Using the field-theoretical formalism of non-linear sigma-model, we derive the pure-scaling operators representing generalizing multifractality and then translate them to the language of eigenstate observables. Performing numerical simulations on network models for SQH and IQH transitions, we confirm the analytical predictions for scaling observables and determine the corresponding exponents. Remarkably, the generalized-multifractality exponents at the SQH critical point strongly violate the generalized parabolicity of the spectrum, which implies violation of the local conformal invariance at this critical point.
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to t he multifractal dimension $d_2$. Our analysis is based on an experimentally realizable setup, the quantum kicked rotor with quasi-periodic temporal driving, an effectively 3-dimensional disordered system recently exploited to explore the physics of the Anderson transition with cold atoms.
The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while the critical disorder and critical exponent are found to be independent of the boundary conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا