ﻻ يوجد ملخص باللغة العربية
We report an artificial geometrically frustrated magnet based on an array of lithographically fabricated single-domain ferromagnetic islands. The islands are arranged such that the dipole interactions create a two-dimensional analogue to spin ice. Images of the magnetic moments of individual elements in this correlated system allow us to study the local accommodation of frustration. We see both ice-like short-range correlations and an absence of long-range correlations, behaviour which is strikingly similar to the lowtemperature state of spin ice. These results demonstrate that artificial frustrated magnets can provide an uncharted arena in which the physics of frustration can be directly visualized.
We propose a method to study the magnetic properties of a disordered Ising kagome lattice. The model considers small spin clusters with infinite-range disordered couplings and short-range ferromagnetic (FE) or antiferromagnetic interactions. The corr
The recent discovery of Spin-ice is a spectacular example of non-coplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic-ferromagnet pyrochlore Sm2Mo2O7. Our studies,
We report on the crossover from the thermal to athermal regime of an artificial spin ice formed from a square array of magnetic islands whose lateral size, 30~nm~$times$~70~nm, is small enough that they are superparamagnetic at room temperature. We u
Artificial spin ice (ASI) are arrays on nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intr
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave freque