ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice

143   0   0.0 ( 0 )
 نشر من قبل F\\'abio Zimmer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to study the magnetic properties of a disordered Ising kagome lattice. The model considers small spin clusters with infinite-range disordered couplings and short-range ferromagnetic (FE) or antiferromagnetic interactions. The correlated cluster mean-field theory is used to obtain an effective single-cluster problem. A finite disorder intensity in FE kagome lattice introduces a cluster spin-glass (CSG) phase. Nevertheless, an infinitesimal disorder stabilizes the CSG behavior in the geometrically frustrated kagome system. Entropy, magnetic susceptibility and spin-spin correlation are used to describe the interplay between disorder and geometric frustration (GF). We find that GF plays an important role in the low-disorder CSG phase. However, the increase of disorder can rule out the effect of GF.



قيم البحث

اقرأ أيضاً

The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions. The replica formalism is used to obtain an effective single cluster model from where the thermodynamics is analyzed by exact diagonalization. We found that the presence of GF can introduce cluster freezing at very low levels of disorder. The system exhibits an entropy plateau followed by a large entropy drop close to the freezing temperature. In this scenario, a spin-liquid (SL) behavior prevents conventional long-range order, but an infinitesimal disorder picks out uncompensated cluster states from the multi degenerate SL regime, potentializing the intercluster disordered coupling and bringing the cluster spin-glass state. To summarize, our results suggest that the SL state combined with low levels of disorder can activate small clusters, providing hypersensitivity to the freezing process in geometrically frustrated materials and playing a key role in the glassy stabilization. We propose that this physical mechanism could be present in several geometrically frustrated materials. In particular, we discuss our results in connection to the recent experimental investigations of the Ising kagome compound Co$_3$Mg(OH)$_6$Cl$_2$.
We report an artificial geometrically frustrated magnet based on an array of lithographically fabricated single-domain ferromagnetic islands. The islands are arranged such that the dipole interactions create a two-dimensional analogue to spin ice. Im ages of the magnetic moments of individual elements in this correlated system allow us to study the local accommodation of frustration. We see both ice-like short-range correlations and an absence of long-range correlations, behaviour which is strikingly similar to the lowtemperature state of spin ice. These results demonstrate that artificial frustrated magnets can provide an uncharted arena in which the physics of frustration can be directly visualized.
We show theoretically that spin and orbital degrees of freedom in the pyrochlore oxide Y2Mo2O7, which is free of quenched disorder, can exhibit a simultaneous glass transition, working as dynamical randomness to each other. The interplay of spins and orbitals is mediated by the Jahn-Teller lattice distortion that selects the choice of orbitals, which then generates variant spin exchange interactions ranging from ferromagnetic to antiferromagnetic ones. Our Monte Carlo simulations detect the power-law divergence of the relaxation times and the negative divergence of both the magnetic and dielectric non-linear susceptibilities, resolving the long-standing puzzle on the origin of the disorder-free spin glass.
We report the bulk magnetic properties of a yet unexplored vanadium-based multivalued spinel system, Zn3V3O8. A Curie-Weiss fit of our dc magnetic susceptibility data in the temperature region from 140 to 300 K yields a Curie constant C = 0.75cm3K/mo le V, theta CW = -370 K. We have observed a splitting between the zero field cooled ZFC and field cooled FC susceptibility curves below a temperature Tirr of about 6.3 K. The value of the frustration parameter nearly equals to 100 suggests that the system is strongly frustrated. From the ac susceptibility measurements we find a logarithmic variation of freezing temperature (Tf ) with frequency attesting to the formation of a spin glass below Tf . However, the value of the characteristic frequency obtained from the Vogel-Fulcher fit suggests that the ground state is closer to a cluster glass rather than a conventional spin glass. We explored further consequences of the spin glass behavior and observed aging phenomena and memory effect (both in ZFC and FC). We found that a positive temperature cycle erases the memory, as predicted by the hierarchical model. From the heat capacity CP data, a hump-like anomaly was observed in CP /T at about 3.75 K. Below this temperature the magnetic heat capacity shows a nearly linear dependence with T which is consistent with the formation of a spin glass state below Tf in Zn3V3O8.
Reentrant spin glasses are frustrated disordered ferromagnets developing vortex-like textures under an applied magnetic field. Our study of a Ni$_{0.81}$Mn$_{0.19}$ single crystal by small angle neutron scattering clarifies their internal structure a nd shows that these textures are randomly distributed. Spin components transverse to the magnetic field rotate over length scales of 3-15 nm in the explored field range, decreasing as field increases according to a scaling law. Monte-Carlo simulations reveal that the internal structure of the vortices is strongly distorted and differs from that assumed for frustrated skyrmions, built upon a competition between symmetric exchange interactions. Isolated vortices have small non-integer topological charge. The vortices keep an anisotropic shape on a 3 dimensional lattice, recalling croutons in a ferromagnetic soup. Their size and number can be tuned independently by the magnetic field and concentration x (or heat treatment), respectively. This opens an original route to understand and control the influence of quenched disorder in systems hosting non trivial spin textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا