ﻻ يوجد ملخص باللغة العربية
We report evidence for phase coexistence of orbital orderings of different symmetry in SmVO$_3$ by high resolution X-Ray powder diffraction. The phase coexistence is triggered by an antiferromagnetic ordering of the vanadium spins near 130K, below an initial orbital ordering near 200K. The phase coexistence is the result of the intermediate ionic size of samarium coupled to exchange striction at the vanadium spin ordering.
From thermodynamic analysis we demonstrate that during metal-insulator transitions in pure matters, a nonequilibrium homogeneous state may be unstable against charge density modulations with certain wavelengths, and thus evolves to the equilibrium ph
Magnetic systems composed of weakly coupled spin-1/2 chains are fertile ground for hosting the fractional magnetic excitations that are intrinsic to interacting fermions in one-dimension (1D). However, the exotic physics arising from the quantum many
From measurements of fluctuation spectroscopy and weak nonlinear transport on the semimetallic ferromagnet EuB$_6$ we find direct evidence for magnetically-driven electronic phase separation consistent with the picture of percolation of magnetic pola
We present powder and single crystal X-ray diffraction data as evidence for a monoclinic distortion in the low spin (S=0) and intermediate spin state (S=1) of LaCoO3. The alternation of short and long bonds in the ab plane indicates the presence of e
By Cu NMR we studied the spin and charge structure in Nd_{2-x}Ce_{x}CuO_{4-delta}. For x=0.15, starting from a superconducting sample, the low temperature magnetic order in the sample reoxygenated under 1 bar oxygen at 900^0 C, reveals a peculiar mod