ﻻ يوجد ملخص باللغة العربية
We have measured the magnetic field (H<90 kOe) and pressure (P<10 kbar) dependence of the magnetic ordering temperature, Tmag, in single crystal samples of NaxCoO2 for a range of Na concentrations (0.60<x<0.72). We show that in zero field, Tmag remains constant with decreasing x before magnetic order disappears at x=0.65. Heat capacity and magnetization data show that for x=0.70, Tmag is unchanged in an applied field. In contrast, magnetization data collected under hydrostatic pressure show that Tmag increases from 22.0 K at 1 bar to 25.4 K at 10 kbar. This rise is at odds with the behaviour expected for model spin density wave systems.
The results of DC magnetization measurements under hydrostatic (helium-gas) pressure are reported for an ambient pressure superconductor Na0.35CoO2.1.4D2O and its precursor compound, the gamma-phase Na0.75CoO2 that is known to combine a metallic cond
We present powder and single-crystal neutron diffraction and bulk measurements of the Kagome-staircase compound Ni3V2O8 (NVO) in fields up to 8.5T applied along the c-direction. (The Kagome plane is the a-c plane.) This system contains two types of N
We report the magnetic field dependent dc magnetization and the pressure-dependent (pmax ~ 16 kbar) ac susceptibilities Xp(T) on both powder and bulk multiferroic BiMnO3 samples, synthesized in different batches under high pressure. A clear ferromagn
The itinerant quasi-ferromagnetic metal MnSi has been studied by detailed thermal expansion measurements under pressures and magnetic fields. A sudden decrease of the volume at the critical pressure Pc ~1.6 GPa has been observed and is in good agreem
Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La$_{1-x}$Ca$_x$MnO$_3$ ($x=0.47$, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properti