ترغب بنشر مسار تعليمي؟ اضغط هنا

The magnetic field and pressure dependence of the magnetic ordering transition in NaxCoO2 (0.6<x<0.72)

71   0   0.0 ( 0 )
 نشر من قبل Jennifer Wooldridge
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the magnetic field (H<90 kOe) and pressure (P<10 kbar) dependence of the magnetic ordering temperature, Tmag, in single crystal samples of NaxCoO2 for a range of Na concentrations (0.60<x<0.72). We show that in zero field, Tmag remains constant with decreasing x before magnetic order disappears at x=0.65. Heat capacity and magnetization data show that for x=0.70, Tmag is unchanged in an applied field. In contrast, magnetization data collected under hydrostatic pressure show that Tmag increases from 22.0 K at 1 bar to 25.4 K at 10 kbar. This rise is at odds with the behaviour expected for model spin density wave systems.



قيم البحث

اقرأ أيضاً

446 - Y. V. Sushko 2005
The results of DC magnetization measurements under hydrostatic (helium-gas) pressure are reported for an ambient pressure superconductor Na0.35CoO2.1.4D2O and its precursor compound, the gamma-phase Na0.75CoO2 that is known to combine a metallic cond uctivity with an unusual magnetic state below ~22K. The obtained data allowed us to present for the first time the pressure dependence of the magnetic transition in a metallic sodium cobaltate system. This dependence appears to be positive, with the magnetic transition rapidly shifting towards higher temperatures when an applied pressure increases. We ascribe the observed effect to the pressure-induced enhancement of the out-of-plane antiferromagnetic coupling mediated by localized spins interactions (of either superexchange or RKKY type), the scenario consistent with the A-type antiferromagnetic state suggested by recent neutron-scattering data. As for the pressure effect on the superconductivity in Na0.35CoO2.1.4D2O, our measurements established negative and linear for the entire pressure range from 1 bar to 8.3 kbar pressure dependence of Tc, the behavior quite different from the reported by previous workers strong non-linearity of the Tc (P) dependence. (Dated September 12, 2005) PACS numbers: 74.62.Fj, 74.70.-b, 75.20. En, 75.50 Ee, 75.30 Kz.
We present powder and single-crystal neutron diffraction and bulk measurements of the Kagome-staircase compound Ni3V2O8 (NVO) in fields up to 8.5T applied along the c-direction. (The Kagome plane is the a-c plane.) This system contains two types of N i ions, which we call spine and cross-tie. Our neutron measurements can be described with the paramagnetic space group Cmca for T < 15K and each observed magnetically ordered phase is characterized by the appropriate irreducible representation(s). Our zero-field measurements show that at T_PH=9.1K NVO undergoes a transition to an incommensurate order which is dominated by a longitudinally-modulated structure with the spine spins mainly parallel to the a-axis. Upon further cooling, a transition is induced at T_HL=6.3K to an elliptically polarized incommensurate structure with both spine and cross-tie moments in the a-b plane. At T_LC=4K the system undergoes a first-order phase transition, below which the magnetic structure is a commensurate antiferromagnet with the staggered magnetization primarily along the a-axis and a weak ferromagnetic moment along the c-axis. A specific heat peak at T_CC=2.3K indicates an additional transition, which we were however not able to relate to a change of the magnetic structure. Neutron, specific heat, and magnetization measurements produce a comprehensive temperature-field phase diagram. The symmetries of the two incommensurate magnetic phases are consistent with the observation that only one phase has a spontaneous ferroelectric polarization. All the observed magnetic structures are explained theoretically using a simplified model Hamiltonian, involving competing nearest- and next-nearest-neighbor exchange interactions, spin anisotropy, Dzyaloshinskii-Moriya and pseudo-dipolar interactions.
189 - C. C. Chou , S. Taran , J. L. Her 2010
We report the magnetic field dependent dc magnetization and the pressure-dependent (pmax ~ 16 kbar) ac susceptibilities Xp(T) on both powder and bulk multiferroic BiMnO3 samples, synthesized in different batches under high pressure. A clear ferromagn etic (FM) transition is observed at TC ~ 100 K, and increases with magnetic field. The magnetic hysteresis behavior is similar to that of a soft ferromagnet. Ac susceptibility data indicate that both the FM peak and its temperature (TC) decrease simultaneously with increasing pressure. Interestingly, above a certain pressure (9 ~ 11 kbar), another peak appears at Tp ~ 93 K, which also decreases with increasing pressure, with both these peaks persisting over some intermediate pressure range (9 ~ 13 kbar). The FM peak disappears with further application of pressure; however, the second peak survives until present pressure limit (pmax ~ 16 kbar). These features are considered to originate from the complex interplay of the magnetic and orbital structure of BiMnO3 being affected by pressure.
The itinerant quasi-ferromagnetic metal MnSi has been studied by detailed thermal expansion measurements under pressures and magnetic fields. A sudden decrease of the volume at the critical pressure Pc ~1.6 GPa has been observed and is in good agreem ent with the pressure variation of the volume fraction of the spiral magnetic ordering. This confirms that the magnetic order disappears by a first order phase transition. The energy change estimated by the volume discontinuity on crossing Pc is of similar order as the Zeeman energy of the transition from the spiral ground state to a polarized paramagnetic one under magnetic field. In contrast to the strong pressure dependence of the transition temperature, the characteristic fields are weakly pressure dependent, indicating that the strength of the ferromagnetic and the Dzyaloshinskii-Moriya interactions do not change drastically around Pc. The evaluated results of the thermal expansion coefficient and the magnetostriction are analyzed thermodynamically. The Sommerfeld coefficient of the linear temperature term of the specific heat is enhanced just below Pc. The magnetic field-temperature phase diagrams in the ordered and paramagnetic phases are also compared. Comparison is made with other heavy fermion compounds with first order phase transition at 0 K.
Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La$_{1-x}$Ca$_x$MnO$_3$ ($x=0.47$, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properti es of the system around the composition corresponding to an equal number of Mn3+ and Mn4+. At room temperature all three samples are paramagnetic and single phase, with crystallographic symmetry Pnma. The samples then all become ferromagnetic (FM) at $T_Capprox 265$ K. At $sim 230$ K, however, a second distinct crystallographic phase (denoted A-II) begins to form. Initially the intrinsic widths of the peaks are quite large, but they narrow as the temperature decreases and the phase fraction increases, indicating microscopic coexistence. The fraction of the sample that exhibits the A-II phase increases with decreasing temperature and also increases with increasing Ca doping, but the transition never goes to completion to the lowest temperatures measured (5 K) and the two phases therefore coexist in this temperature-composition regime. Phase A-II orders antiferromagnetically (AFM) below a N{e}el temperature $T_N approx 160$ K, with the CE-type magnetic structure. Resistivity measurements show that this phase is a conductor, while the CE phase is insulating. Application of magnetic fields up to 9 T progressively inhibits the formation of the A-II phase, but this suppression is path dependent, being much stronger for example if the sample is field-cooled compared to zero-field cooling and then applying the field. The H-T phase diagram obtained from the diffraction measurements is in good agreement with the results of magnetization and resistivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا