ﻻ يوجد ملخص باللغة العربية
The itinerant quasi-ferromagnetic metal MnSi has been studied by detailed thermal expansion measurements under pressures and magnetic fields. A sudden decrease of the volume at the critical pressure Pc ~1.6 GPa has been observed and is in good agreement with the pressure variation of the volume fraction of the spiral magnetic ordering. This confirms that the magnetic order disappears by a first order phase transition. The energy change estimated by the volume discontinuity on crossing Pc is of similar order as the Zeeman energy of the transition from the spiral ground state to a polarized paramagnetic one under magnetic field. In contrast to the strong pressure dependence of the transition temperature, the characteristic fields are weakly pressure dependent, indicating that the strength of the ferromagnetic and the Dzyaloshinskii-Moriya interactions do not change drastically around Pc. The evaluated results of the thermal expansion coefficient and the magnetostriction are analyzed thermodynamically. The Sommerfeld coefficient of the linear temperature term of the specific heat is enhanced just below Pc. The magnetic field-temperature phase diagrams in the ordered and paramagnetic phases are also compared. Comparison is made with other heavy fermion compounds with first order phase transition at 0 K.
We report comprehensive small angle neutron scattering (SANS) measurements complemented by ac susceptibility data of the helical order, conical phase and skyrmion lattice phase (SLP) in MnSi under uniaxial pressures. For all crystallographic orientat
We report results of high-resolution measurements of the emph{c$^*$}-axis expansivity ($alpha_{c^{*}}$) at the charge-ordering (CO) transition for the quasi-1D (TMTTF)$_{2}$X compounds with X = SbF$_6$ and Br and make a comparison with previous resul
We report the structure and magnetism of PrOFeAs, one of the parent phases of the newly discovered Fe-As superconductors, as measured by neutron powder diffraction. In common with other REOFeAs materials, a tetragonal-orthorhombic phase transition is
We present high-resolution thermal-expansion and specific-heat measurements of single crystalline alpha-RuCl3. An extremely hysteretic structural transition expanding over 100 K is observed by thermal- expansion along both crystallographic axes, whic
We report a study of the topological Hall effect (THE) in Fe-doped MnSi and compare with results from pure MnSi under pressure. We find that Fe doping increases the THE, indicating an enhancement of the magnitude of the emergent gauge field. This is