ﻻ يوجد ملخص باللغة العربية
We calculate the number of metastable configurations of Ising small-world networks which are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and we find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings.
Mapping a complex network to an atomic cluster, the Anderson localization theory is used to obtain the load distribution on a complex network. Based upon an intelligence-limited model we consider the load distribution and the congestion and cascade f
Two new classes of networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They consist of a one-dimensional lattice backbone overlayed by a hierarchical sequence of
The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $Delt
We investigate the stochastic resonance phenomena in the field-driven Ising model on small-world networks. The response of the magnetization to an oscillating magnetic field is examined by means of Monte Carlo dynamic simulations, with the rewiring p
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas proble