ﻻ يوجد ملخص باللغة العربية
Two new classes of networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They consist of a one-dimensional lattice backbone overlayed by a hierarchical sequence of long-distance links. Both types of networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular networks are planar, have a diameter growing as sqrt{N} with the system size N, and lead to super-diffusion with an exact, anomalous exponent d_w=1.3057581..., but possesses only a trivial fixed point T_c=0 for the Ising ferromagnet. In turn, the 4-regular networks are non-planar, have a diameter growing as ~2^[sqrt(log_2 N^2)], exhibit ballistic diffusion (d_w=1), and a non-trivial ferromagnetic transition, T_c>0. It suggest that the 3-regular networks are still quite geometric, while the 4-regular networks qualify as true small-world networks with mean-field properties. As an example of an application we discuss synchronization of processors on these networks.
Mapping a complex network to an atomic cluster, the Anderson localization theory is used to obtain the load distribution on a complex network. Based upon an intelligence-limited model we consider the load distribution and the congestion and cascade f
We calculate the number of metastable configurations of Ising small-world networks which are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We
The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $Delt
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas proble
We investigate the stochastic resonance phenomena in the field-driven Ising model on small-world networks. The response of the magnetization to an oscillating magnetic field is examined by means of Monte Carlo dynamic simulations, with the rewiring p