ﻻ يوجد ملخص باللغة العربية
The case of ac transport at in-phase alternating applied magnetic fields for a superconducting rectangular strip with finite thickness has been investigated. The applied magnetic field is considered perpendicular to the current flow. We present numerical calculations assuming the critical state model of the current distribution and ac loss for various values of aspect ratio, transport current and applied field amplitude. A rich phenomenology is obtained due to the metastable nature of the critical state. We perform a detailed comparison with the analytical limits and we discuss their applicability for the actual geometry of superconducting conductors. We also define a loss factor which allow a more detailed analysis of the ac behavior than the ac loss. Finally, we compare the calculations with experiments, showing a significant qualitative and quantitative agreement without any fitting parameter.
A simple analytical expression is presented for hysteretic ac loss $Q$ of a superconducting strip simultaneously exposed to an ac transport current $I_0cosomega t$ and a phase-different ac magnetic field $H_0cos(omega t+theta_0)$. On the basis of Bea
Analytic expressions for alternating current (ac) loss in radially arranged superconducting strips are presented. We adopt the weight-function approach to obtain the field distributions in the critical state model, and we have developed an analytic m
Current distribution for a thin superconducting strip shielded by two ideally conducting plains has been calculated. It is shown that at microwave requencies the current density has maximum over the center of the strip in contrast to the dc current pattern, which exhibits crowding over the edges.
The hysteretic ac loss of a current-carrying conductor in which multiple superconducting strips are polygonally arranged around a cylindrical former is theoretically investigated as a model of superconducting cables. Using the critical state model, w
We study long Josephson junctions with the critical current density alternating along the junction. New equilibrium states, which we call the field synchronized or FS states, are shown to exist if the applied field is from narrow intervals centered a