ﻻ يوجد ملخص باللغة العربية
An analytic expression is given for the inverse Faraday effect, i.e. for the magnetization occurring in a transparent medium exposed to a circularly polarized high-frequency electromagnetic wave. Using a microscopic approach the magnetization of the medium due to the inverse Faraday effect is identified as the result of microscopic solenoidal currents generated by the electromagnetic wave. In contrast to the better known phenomenological derivation, the microscopic treatment provides important information on the frequency dependence of the inverse Faraday effect.
A circularly polarized light can induce a dissipationless dc current in a quantum nanoring which is responsible for a resonant helicity-driven contribution to magnetic moment. This current is not suppressed by thermal averaging despite its quantum na
The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theor
We have studied helicity dependent photocurrent (HDP) in Bi-based Dirac semimetal thin films. HDP increases with film thickness before it saturates, changes its sign when the majority carrier type is changed from electrons to holes and takes a sharp
A collective, macroscopic signature to detect radiation friction in laser-plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losse
Single-mode high-index-contrast waveguides have been ubiquitously exploited in optical, microwave, and phononic structures for achieving enhanced wave-matter interactions. Although micro-scale optomechanical and electro-optical devices have been wide