ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Faraday effect in Mott insulators

102   0   0.0 ( 0 )
 نشر من قبل Saikat Banerjee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theory. In the Mott insulators with inversion symmetry, we find that the effective magnetic field induced by the IFE couples ferromagnetically to the neighboring spins. While for the Mott insulators without inversion symmetry, the effective magnetic field due to IFE couples antiferromagnetically to the neighboring spins. We apply the theory to the spin-orbit coupled single- and multi-orbital Hubbard model that is relevant for the Kitaev quantum spin liquid materials and demonstrate that the magnetic interactions can be tuned by light.



قيم البحث

اقرأ أيضاً

We have studied helicity dependent photocurrent (HDP) in Bi-based Dirac semimetal thin films. HDP increases with film thickness before it saturates, changes its sign when the majority carrier type is changed from electrons to holes and takes a sharp peak when the Fermi level lies near the charge neutrality point. These results suggest that irradiation of circularly polarized light to Dirac semimetals induces an effective magnetic field that aligns the carrier spin along the light spin angular momentum and generates a spin current along the film normal. The effective magnetic field is estimated to be orders of magnitude larger than that caused by the inverse Faraday effect (IFE) in typical transition metals. We consider the small effective mass and the large $g$-factor, characteristics of Dirac semimetals with strong spin orbit coupling, are responsible for the giant IFE, opening pathways to develop systems with strong light-spin coupling.
96 - T. Mizokawa , D. I. Khomskii , 1999
We have investigated possible spin and charge ordered states in 3d transition-metal oxides with small or negative charge-transfer energy, which can be regarded as self-doped Mott insulators, using Hartree-Fock calculations on d-p-type lattice models. It was found that an antiferromagnetic state with charge ordering in oxygen 2p orbitals is favored for relatively large charge-transfer energy and may be relevant for PrNiO$_3$ and NdNiO$_3$. On the other hand, an antiferromagnetic state with charge ordering in transition-metal 3$d$ orbitals tends to be stable for highly negative charge-transfer energy and can be stabilized by the breathing-type lattice distortion; this is probably realized in YNiO$_3$.
We present the results of the magnetic and specific heat measurements on V4 tetrahedral-cluster compound GaV4S8 between 2 to 300K. We find two transitions related to a structural change at 42K followed by ferromagnetic order at 12K on cooling. Remark ably similar properties were previously reported for the cluster compounds of Mo4. These compounds show an extremely high density of low energy excitations in their electronic properties. We explain this behavior in a cluster compound as due to the reduction of coulomb repulsion among electrons that occupy highly degenerate orbits of different clusters.
In high-resolution core-valence-valence (CVV) Auger electron spectroscopy from the surface of a solid at thermal equilibrium, the main correlation satellite, visible in the case of strong valence-electron correlations, corresponds to a bound state of the two holes in the final state of the CVV Auger process. We discuss the physical significance of this satellite in nonequilibrium pump-probe Auger spectroscopy by numerical analysis of a single-band Hubbard-type model system including core states and a continuum of high-energy scattering states. It turns out that the spectrum of the photo-doped system, due to the increased double occupancy, shares features with the equilibrium spectrum at higher fillings. The pumping of doublons can be watched when working with overlapping pulses at short $Delta t$. For larger pump-probe delays $Delta t$ and on the typical femtosecond time scale for electronic relaxation processes, spectra are hardly $Delta t$-dependent, reflecting the high stability of bound two-hole states for strong Hubbard-$U$. We argue that taking into account the spatial expansion of single-particle orbitals when these are doubly occupied, as described by the dynamical Hubbard model, produces an oscillation of the barycenter of the satellite as a function of $Delta t$. Pump-probe Auger-electron spectroscopy is thus highly sensitive to dynamical screening of the Coulomb interaction.
76 - Joji Nasu , Makoto Naka 2020
We propose a mechanism of the spin Seebeck effect attributed to excitonic condensation in a nonmagnetic insulator. We analyze a half-filled two-orbital Hubbard model with a crystalline field splitting in the strong coupling limit. In this model, the competition between the crystalline field and electron correlations brings about an excitonic insulating state, where the two orbitals are spontaneously hybridized. Using the generalized spin-wave theory and Boltzmann transport equation, we find that a spin current generated by a thermal gradient is observed in the excitonic insulating state without magnetic fields. The spin Seebeck effect originates from spin-split collective excitation modes although the ground state does not exhibit any magnetic orderings. This peculiar phenomenon is inherent in the excitonic insulating state, whose order parameter is time-reversal odd and yields a spin splitting for the collective excitation modes. We also find that the spin current is strongly enhanced and its direction is inverted in the vicinity of the phase transition to another magnetically ordered phase. We suggest that the present phenomenon is possibly observed in perovskite cobaltites with the GdFeO$_3$-type lattice distortion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا