ﻻ يوجد ملخص باللغة العربية
LDA+DMFT, the merger of density functional theory in the local density approximation and dynamical mean-field theory, has been mostly employed to calculate k-integrated spectra accessible by photoemission spectroscopy. In this paper, we calculate k-resolved spectral functions by LDA+DMFT. To this end, we employ the Nth order muffin-tin (NMTO) downfolding to set up an effective low-energy Hamiltonian with three t_2g orbitals. This downfolded Hamiltonian is solved by DMFT yielding k-dependent spectra. Our results show renormalized quasiparticle bands over a broad energy range from -0.7 eV to +0.9 eV with small ``kinks, discernible in the dispersion below the Fermi energy.
We have implemented the $GW$+dynamical mean field theory (DMFT) approach in the Vienna ab initio simulation package. Employing the interaction values obtained from the locally unscreened random phase approximation (RPA), we compare $GW$+DMFT and LDA+
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar
The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local
The new challenges posed by the need of finding strong rare-earth free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated electron effects, which are normally underestimated
The puzzling absence of Pu magnetic moments in a PuAm environment is explored using the self-consistent Dynamical Mean Field Theory (DMFT) calculations in combination with the Local Density Approximation. We argue that delta-Pu -Am alloys provide an