ترغب بنشر مسار تعليمي؟ اضغط هنا

Screening of magnetic moments in PuAm alloy : LDA+DMFT study

244   0   0.0 ( 0 )
 نشر من قبل Ji Hoon Shim
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The puzzling absence of Pu magnetic moments in a PuAm environment is explored using the self-consistent Dynamical Mean Field Theory (DMFT) calculations in combination with the Local Density Approximation. We argue that delta-Pu -Am alloys provide an ideal test bed for investigating the screening of moments from the single impurity limit to the dense limit. Several important effects can be studied: volume expansion, shift of the bare Pu on-site f energy level, and the reduction of the hybridization cloud resulting from the collective character of the Kondo effect in the Anderson lattice. These effects compensate each other and result in a coherence scale, which is independent of alloy composition, and is around 800K. We emphasize the role of the DMFT self-consistency condition, and multiplet splittings in Pu and Am atoms, in order to capture the correct value of the coherence scale in the alloy.



قيم البحث

اقرأ أيضاً

180 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar e (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
Ab initio calculation of the electronic properties of materials is a major challenge for solid state theory. Whereas the experience of forty years has proven density functional theory (DFT) in a suitable, e.g. local approximation (LDA) to give a sati sfactory description in case electronic correlations are weak, materials with strongly correlated, say d- or f-electrons remain a challenge. Such materials often exhibit colossal responses to small changes of external parameters such as pressure, temperature, and magnetic field, and are therefore most interesting for technical applications. Encouraged by the success of dynamical mean field theory (DMFT) in dealing with model Hamiltonians for strongly correlated electron systems, physicists from the bandstructure and many-body communities have joined forces and have developed a combined LDA+DMFT method for treating materials with strongly correlated electrons ab initio. As a function of increasing Coulomb correlations, this new approach yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator. In this paper, we introduce the LDA+DMFT by means of an example, LaMnO_3 . Results for this material, including the colossal magnetoresistance of doped manganites are presented. We also discuss advantages and disadvantages of the LDA+DMFT approach.
Effects of Coulomb correlation on LaOFeAs electronic structure have been investigated by LDA+DMFT(QMC) method. The calculation results show that LaOFeAs is in the regime of intermediate correlation strength with significant part of the spectral densi ty moved from the Fermi energy to Hubbard bands. However the system is not on the edge of metal insulator-transition because increase of the Coulomb interaction parameter value from $U$=4.0 eV to $U$=5.0 eV did not result in insulator state. Correlations affect different d-orbitals not in the same way. $t_{2g}$ states ($xz,yz$ and $x^2-y^2$ orbitals) have higher energy due to crystal filed splitting and are nearly half-filled. Their spectral functions have pseudogap with Fermi energy position on the higher sub-band slope. Lower energy $e_g$ set of d-orbitals ($3z^2-r^2$ and $xy$) have significantly larger occupancy values with typically metallic spectral functions.
The BaNi$_2$As$_2$ compound is investigated using both the angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and combined computational scheme of local density approximation together with dynamical mean-field theory (LD A+DMFT). For more realistic comparison of LDA+DMFT spectral functions with ARPES data we take into account several experimental features: the photoemission cross-section, the experimental energy and angular resolutions and the photo-hole lifetime effects. In contrast to isostructural iron arsenides the BaNi$_2$As$_2$ within LDA+DMFT appears to be weakly correlated (effective mass enhancement about $1.2$). This dramatic reduction of the correlation strength comes from the increase of 3d-orbital filling, when going from Fe to Ni, together with rather large bare Ni-3d LDA bandwidth. Nevertheless, even weakened electron correlations cause remarkable reconstruction of the bare BaNi$_2$As$_2$ LDA band structure and corresponding LDA+DMFT calculations provide better agreement with ARPES than just renormalized LDA results.
The thermodynamic properties of strongly correlated system with binary type of disorder are investigated using the combination of the coherent potential approximation and dynamical mean-field theory. The specific heat has a peak at small temperatures for the concentrations close to the filling of system. This peak is associated with the local moment formation due to Coulomb interaction. The linear coefficient to the specific heat is divergent and the system stays in the non-Fermi-liquid regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا