ﻻ يوجد ملخص باللغة العربية
This paper examines the properties of the self-energy operator in lattice-matched semiconductor heterostructures, focusing on nonanalytic behavior at small values of the crystal momentum, which gives rise to long-range Coulomb potentials. A nonlinear response theory is developed for nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the heterostructure is treated as a perturbation of a bulk reference crystal, and the self-energy is derived to second order in the perturbation. If spin-orbit coupling is neglected outside the atomic cores, the problem can be analyzed as if the perturbation were a local spin scalar, since the nonlocal spin-dependent part of the pseudopotential merely renormalizes the results obtained from a local perturbation. The spin-dependent terms in the self-energy therefore fall into two classes: short-range potentials that are analytic in momentum space, and long-range nonanalytic terms that arise from the screened Coulomb potential multiplied by a spin-dependent vertex function. For an insulator at zero temperature, it is shown that the electronic charge induced by a given perturbation is exactly linearly proportional to the charge of the perturbing potential. These results are used in a subsequent paper to develop a first-principles effective-mass theory with generalized Rashba spin-orbit coupling.
We present Maxwell equations with source terms for the electromagnetic field interacting with a moving electron in a spin-orbit coupled semiconductor heterostructure. We start with the eight--band ${bm k}{bm p}$ model and derive the electric and magn
Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superla
We investigate the effects of spin-orbit coupling on the optical response of materials. In particular, we study the effects of the commutator between the spin-orbit coupling part of the potential and the position operator on the optical matrix elemen
In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv