ﻻ يوجد ملخص باللغة العربية
The effect of damage induced by 2-MeV alpha particles, followed by annealing, on the critical temperature (Tc), resistivity, and upper critical field (Hc2), of three MgB2 films made by different deposition processes has been studied. Damage creates a linear decrease in Tc with residual resistivity, and produces maxima in both Hc2(0)-perpendicular and Hc2(0)-parallel. Below Tcs of about 25 K, Hc2(0) depends roughly linearly on Tc, while the anisotropy of Hc2(0) decreases as Tc decreases. Annealing the films reproduces the Tc vs. residual resistivity dependence but not the Hc2(0) values induced by damage.
We have studied the effect of damage induced by 2-MeV alpha particles on the critical temperature, Tc, and resistivity of MgB2 thin films. This technique allows defects to be controllably introduced into MgB2 in small successive steps. Tc decreases l
The amount of oxygen incorporated into MgB2 thin films upon exposure to atmospheric gasses is found to depend strongly on the materials stoichiometry. Rutherford backscattering spectroscopy was used to monitor changes in oxygen incorporation resultin
MgB2 thin films were cold-grown on sapphire substrates by pulsed laser deposition (PLD), followed by post-annealing in mixed, reducing gas, Mg-rich, Zr gettered, environments. The films had Tcs in the range 29 K to 34 K, Jcs (20K, H=0) in the range 3
Our Rutherford backscattering spectrometry (RBS) study has found that concentrations up to 7 atomic percent of Rb and Cs can be introduced to a depth of ~700 A in MgB2 thin films by annealing in quartz ampoules containing elemental alkali metals at <
A series of MgB2 thin films were fabricated by pulsed laser deposition (PLD), doped with various amounts of Si up to a level of 18wt%. Si was introduced into the PLD MgB2 films by sequential ablation of a stoichiometric MgB2 target and a Si target. T