ﻻ يوجد ملخص باللغة العربية
There have been many discussions of two-mode models for Bose condensates in a double well potential, but few cases in which parameters for these models have been calculated for realistic situations. Recent experiments lead us to use the Gross-Pitaevskii equation to obtain optimum two-mode parameters. We find that by using the lowest symmetric and antisymmetric wavefunctions, it is possible to derive equations for a more exact two-mode model that provides for a variable tunneling rate depending on the instantaneous values of the number of atoms and phase differences. Especially for larger values of the nonlinear interaction term and larger barrier heights, results from this model produce better agreement with numerical solutions of the time-dependent Gross-Pitaevskii equation in 1D and 3D, as compared with previous models with constant tunneling, and better agreement with experimental results for the tunneling oscillation frequency [Albiez et al., cond-mat/0411757]. We also show how this approach can be used to obtain modified equations for a second quantized version of the Bose double well problem.
We carry out extensive direct numerical simulations (DNSs) to investigate the interaction of active particles and fields in the two-dimensional (2D) Gross-Pitaevskii (GP) superfluid, in both simple and turbulent flows. The particles are active in the
We construct exact localised solutions of the PT-symmetric Gross-Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has the form of two $delta$-function wells, where one well loses particles while the other one is fed w
We consider N bosons in a box with volume one, interacting through a two-body potential with scattering length of the order $N^{-1+kappa}$, for $kappa>0$. Assuming that $kappain (0;1/43)$, we show that low-energy states of the system exhibit complete
We show that the Josephson plasma frequency for a condensate in a double-well potential, whose dynamics is described by the Gross-Pitaevskii (GP) equation, can be obtained with great precision by means of the usual Bogoliubov approach, whereas the tw
Gap solitons near a band edge of a spatially periodic nonlinear PDE can be formally approximated by solutions of Coupled Mode Equations (CMEs). Here we study this approximation for the case of the 2D Periodic Nonlinear Schr{o}dinger / Gross-Pitaevski