ترغب بنشر مسار تعليمي؟ اضغط هنا

Particles and Fields in Superfluids: Insights from the Two-dimensional Gross-Pitaevskii Equation

82   0   0.0 ( 0 )
 نشر من قبل Vishwanath Shukla
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carry out extensive direct numerical simulations (DNSs) to investigate the interaction of active particles and fields in the two-dimensional (2D) Gross-Pitaevskii (GP) superfluid, in both simple and turbulent flows. The particles are active in the sense that they affect the superfluid even as they are affected by it. We tune the mass of the particles, which is an important control parameter. At the one-particle level, we show how light, neutral, and heavy particles move in the superfluid, when a constant external force acts on them; in particular, beyond a critical velocity, at which a vortex-antivortex pair is emitted, particle motion can be periodic or chaotic. We demonstrate that the interaction of a particle with vortices leads to dynamics that depends sensitively on the particle characteristics. We also demonstrate that assemblies of particles and vortices can have rich, and often turbulent spatiotemporal evolution. In particular, we consider the dynamics of the following illustrative initial configurations: (a) one particle placed in front of a translating vortex-antivortex pair; (b) two particles placed in front of a translating vortex-antivortex pair; (c) a single particle moving in the presence of counter-rotating vortex clusters; and (d) four particles in the presence of counter-rotating vortex clusters. We compare our work with earlier studies and examine its implications for recent experimental studies in superfluid Helium and Bose-Einstein condensates.



قيم البحث

اقرأ أيضاً

We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear reson ant system whose structure is determined by the fully resonant spectrum of the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of modes of fixed angular momentum, and second, to excited Landau levels. Each of these truncations admits a set of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position space, the fixed angular momentum solutions describe modulated oscillations of dark rings, while the excited Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent literature.
We show that the Josephson plasma frequency for a condensate in a double-well potential, whose dynamics is described by the Gross-Pitaevskii (GP) equation, can be obtained with great precision by means of the usual Bogoliubov approach, whereas the tw o-mode model - commonly constructed by means of a linear combinations of the low-lying states of the GP equation - generally provides accurate results only for weak interactions. A proper two-mode model in terms of the Bogoliubov functions is also discussed, revealing that in general a two-mode approach is formally justified only for not too large interactions, even in the limit of very small amplitude oscillations. Here we consider specifically the case of a one-dimensional system, but the results are expected to be valid in arbitrary dimensions.
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e. by integrating over the coordinates. A direct comparison with the solut ion of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution - the actual wave function is reproduced with a fidelity close to unity - for arbitrary values of the interactions. This result represents a proof-of-concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared with the exact evolution.
We describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for an interacting Bose gas in a harmonic oscillator potential, with the inclusion of a long-range dipolar interaction. The central difficulty in solving this equation i s the requirement that the field is restricted to a small set of prescribed modes that constitute the low energy c-field region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the dipolar PGPE. We introduce a set of auxiliary oscillator states to perform a Fourier transform necessary to evaluate the dipolar interaction in reciprocal space. We extensively characterize the accuracy of our approach, and derive Ehrenfest equations for the evolution of the angular momentum.
The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instabil ity and collapse for attractive non-linear interactions. We show that the GPE with repulsive non-linear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wavefunctions is to be distinguished from the notion of non-integrability of non-linear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا