ترغب بنشر مسار تعليمي؟ اضغط هنا

Huge Ballistic Magnetoresistance in Multiple Nanocontacts Devices

349   0   0.0 ( 0 )
 نشر من قبل N. Garcia
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we report an exhaustive experimental work on magnetoresistance effects found in a system in which a large number of nanocontacts are produced between oxidized Fe fine particles. We have obtained the following performances: i) Huge low field room temperature magnetoresistance (over 1000%). ii) Non-linear I-V at different applied fields and temperatures. iii) Large thermal stability and reproducible resistance value under thermal cycles from room temperature down to 5 K. iv) Easy to fabricate with an almost 100% success. v) Heavy duty and transportable samples with reproducibility tested in several laboratories. We realized that the extraordinary effect found is related to the oxygen content at the particles surface



قيم البحث

اقرأ أيضاً

We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, like chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, like a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.
Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor, several tunneling experiments rep orted characteristic Majorana signatures. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas, and renders the topological properties inaccessible. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy, and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system, and exclude for the first time the known alternative explanations that invoke disorder or a nonuniform chemical potential.
We report a proof-of-concept study of extraordinary magnetoresistance (EMR) in devices of monolayer graphene encapsulated in hexagonal boron nitride, having metallic edge contacts and a central metal shunt. Extremely large EMR values, $MR=(R(B) - R_0 ) / R_0sim 10^5$, are achieved in part because $R_0$ approaches or crosses zero as a function of the gate voltage, exceeding that achieved in high mobility bulk semiconductor devices. We highlight the sensitivity, $dR/dB$, which in two-terminal measurements is the highest yet reported for EMR devices, and in particular exceeds prior results in graphene-based devices by a factor of 20. An asymmetry in the zero-field transport is traced to the presence of $pn$-junctions at the graphene-metal shunt interface.
By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of car bon. In the ground state a short zig-zag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. Application of a magnetic field turns the ribbon ferromagnetic and conducting, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 Tesla or at liquid helium temperature and 300 Gauss.
In organic light emitting diodes with small area the current may be dominated by a finite number, N of sites in which the electron-hole recombination occurs. As a result, averaging over the hyperfine magnetic fields, b_h, that are generated in these sites by the environment nuclei is incomplete. This creates a random (mesoscopic) current component, {Delta}I(B), at field B having relative magnitude ~ N^(-1/2). To quantify the statistical properties of {Delta}I(B) we calculate the correlator K(B, {Delta}B)= <{delta}I(B - {Delta}B/2){delta}I(B + {Delta}B/2)> for parallel and perpendicular orientations of {Delta}B. We demonstrate that mesoscopic fluctuations develop at fields B>>b_h, where the average magnetoresistance is near saturation. These fluctuations originate from the slow beating between S and T_0 states of the recombining e-h spin pair-partners. We identify the most relevant processes responsible for the current fluctuations as due to anomalously slow beatings that develop in sparse e-h polaron pairs at sites for which the b_h projections on the external field direction almost coincide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا