ترغب بنشر مسار تعليمي؟ اضغط هنا

Organic magnetoresistance near saturation: mesoscopic effects in small devices

133   0   0.0 ( 0 )
 نشر من قبل Robert Roundy
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In organic light emitting diodes with small area the current may be dominated by a finite number, N of sites in which the electron-hole recombination occurs. As a result, averaging over the hyperfine magnetic fields, b_h, that are generated in these sites by the environment nuclei is incomplete. This creates a random (mesoscopic) current component, {Delta}I(B), at field B having relative magnitude ~ N^(-1/2). To quantify the statistical properties of {Delta}I(B) we calculate the correlator K(B, {Delta}B)= <{delta}I(B - {Delta}B/2){delta}I(B + {Delta}B/2)> for parallel and perpendicular orientations of {Delta}B. We demonstrate that mesoscopic fluctuations develop at fields B>>b_h, where the average magnetoresistance is near saturation. These fluctuations originate from the slow beating between S and T_0 states of the recombining e-h spin pair-partners. We identify the most relevant processes responsible for the current fluctuations as due to anomalously slow beatings that develop in sparse e-h polaron pairs at sites for which the b_h projections on the external field direction almost coincide.



قيم البحث

اقرأ أيضاً

We demonstrate that nuclear spin fluctuations lead to the electric current noise in the mesoscopic samples of organic semiconductors showing the pronounced magnetoresistance in weak fields. For the bipolaron and electron-hole mechanisms of organic ma gnetoresistance, the current noise spectrum consists of the high frequency peak related to the nuclear spin precession in the Knight field of the charge carriers and the low frequency peak related to the nuclear spin relaxation. The shape of the spectrum depends on the external magnetic and radiofrequency fields, which allows one to prove the role of nuclei in magnetoresistance experimentally.
By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of car bon. In the ground state a short zig-zag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. Application of a magnetic field turns the ribbon ferromagnetic and conducting, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 Tesla or at liquid helium temperature and 300 Gauss.
We observe an unusual behavior of the low-temperature magnetoresistance of the high-mobility two-dimensional electron gas in InGaAs/InAlAs quantum wells in weak perpendicular magnetic fields. The observed magnetoresistance is qualitatively similar to that expected for the weak localization and anti-localization but its quantity exceeds significantly the scale of the quantum corrections. The calculations show that the obtained data can be explained by the classical effects in electron motion along the open orbits in a quasiperiodic potential relief manifested by the presence of ridges on the quantum well surface.
We present an extensive study of a large, room temperature negative magnetoresistance (MR) effect in tris-(8-hydroxyquinoline) aluminum sandwich devices in weak magnetic fields. The effect is similar to that previously discovered in polymer devices. We characterize this effect and discuss its dependence on field direction, voltage, temperature, film thickness, and electrode materials. The MR effect reaches almost 10% at fields of approximately 10 mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. Measuring the devices current-voltage characteristics, we find that the current depends on the voltage through a power-law. We find that the magnetic field changes the prefactor of the power-law, whereas the exponent remains unaffected. We also studied the effect of the magnetic field on the electroluminescence (MEL) of the devices and analyze the relationship between MR and MEL. We find that the largest part of MEL is simply a consequence of a change in device current caused by the MR effect.
The magneto-electronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge carrier pairs due to small differences in their Lande g-factors t hat arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multi-frequency continuous-wave electrically detected magnetic resonance experiments. The measurements were performed on identical devices under similar conditions in order to independently assess the magnetic field-dependent spin-mixing mechanism, the so-called {Delta}g mechanism, which originates from differences in the charge-carrier g-factors induced by spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا