ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-time Thermodynamics of the Glass Transition

148   0   0.0 ( 0 )
 نشر من قبل David Chandler
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the probability distribution for fluctuations in dynamical action and similar quantities related to dynamic heterogeneity. We argue that the so-called glass transition is a manifestation of low action tails in these distributions where the entropy of trajectory space is sub-extensive in time. These low action tails are a consequence of dynamic heterogeneity and an indication of phase coexistence in trajectory space. The glass transition, where the system falls out of equilibrium, is then an order-disorder phenomenon in space-time occurring at a temperature T_g which is a weak function of measurement time. We illustrate our perspective ideas with facilitated lattice models, and note how these ideas apply more generally.



قيم البحث

اقرأ أيضاً

A fluctuation relation is derived to extract the order parameter function $q(x)$ in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap $q$ between configura tions. For a fixed value of $q$, entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the $q(x)$ in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.
Magnetic ordering at low temperature for Ising ferromagnets manifests itself within the associated Fortuin-Kasteleyn (FK) random cluster representation as the occurrence of a single positive density percolating network. In this paper we investigate t he percolation signature for Ising spin glass ordering -- both in short-range (EA) and infinite-range (SK) models -- within a two-replica FK representation and also within the different Chayes-Machta-Redner two-replica graphical representation. Based on numerical studies of the $pm J$ EA model in three dimensions and on rigorous results for the SK model, we conclude that the spin glass transition corresponds to the appearance of {it two} percolating clusters of {it unequal} densities.
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s ame time undergoes only minute structural changes. Among the numerous theories put forward to rationalize this complex behavior, Mode-Coupling Theory (MCT) stands out as the only framework that provides a fully first-principles-based description of glass phenomenology. This review outlines the key physical ingredients of MCT, its predictions, successes, and failures, as well as recent improvements of the theory. We also discuss the extension and application of MCT to the emerging field of non-equilibrium active soft matter
Assuming time-scale separation, a simple and unified theory of thermodynamics and stochastic thermodynamics is constructed for small classical systems strongly interacting with its environment in a controllable fashion. The total Hamiltonian is decom posed into a bath part and a system part, the latter being the Hamiltonian of mean force. Both the conditional equilibrium of bath and the reduced equilibrium of the system are described by canonical ensemble theories with respect to their own Hamiltonians. The bath free energy is independent of the system variables and the control parameter. Furthermore, the weak coupling theory of stochastic thermodynamics becomes applicable almost verbatim, even if the interaction and correlation between the system and its environment are strong and varied externally. Finally, this TSS-based approach also leads to some new insights about the origin of the second law of thermodynamics.
Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for suc h systems by considering the behavior of the density correlator <q(t)> and the dynamical susceptibility <q^2(t)> -<q(t)>^2. Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension d_c=8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا