ﻻ يوجد ملخص باللغة العربية
Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for such systems by considering the behavior of the density correlator <q(t)> and the dynamical susceptibility <q^2(t)> -<q(t)>^2. Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension d_c=8.
Recently, it has been proposed that the adsorption transition for a single polymer in dilute solution, modeled by lattice walks in three dimensions, is not universal with respect to inter-monomer interactions. It has also been conjectured that key cr
The correlation length $xi$, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to
Physical understanding of how the interplay between symmetries and nonlinear effects can control the scaling and multiscaling properties in a coupled driven system, such as magnetohydrodynamic turbulence or turbulent binary fluid mixtures, remains el
We use event driven simulations to analyze glassy dynamics as a function of density and energy dissipation in a two-dimensional bidisperse granular fluid under stationary conditions. Clear signatures of a glass transition are identified, such as an i
Lattice molecule models are proposed in order to study statistical mechanics of glass transition in finite dimensions. Molecules in the models are represented by hard Wang tiles and their density is controlled by a chemical potential. An infinite ser