ترغب بنشر مسار تعليمي؟ اضغط هنا

1/T_1 nuclear relaxation time of kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl : effects of magnetic frustration

191   0   0.0 ( 0 )
 نشر من قبل Adolfo Emilio Trumper
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the role played by the magnetic frustration in the antiferromagnetic phase of the organic salt kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl. Using the spatially anisotropic triangular Heisenberg model we analyze previous and new performed NMR experiments. We compute the 1/T_1 relaxation time by means of the modified spin wave theory. The strong suppression of the nuclear relaxation time observed experimentally under varying pressure and magnetic field is qualitatively well reproduced by the model. Our results suggest the existence of a close relation between the effects of pressure and magnetic frustration.



قيم البحث

اقرأ أيضاً

The recently proposed multiferroic state of the charge-transfer salt {kappa}-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and meas urements of the dielectric constant on various, differently prepared single crystals. In the majority of crystals we confirm the existence of an order-disorder-type ferroelectric state which coincides with antiferromagnetic order. This phenomenology rules out scenarios which consider an inhomogeneous, short-range-ordered ferroelectric state. Measurements of the dielectric constant and the magnetic susceptibility on the same crystals reveal that both transitions lie very close to each other or even collapse, indicating that both types of order are intimately coupled to each other. We address issues of the frequency dependence of the dielectric constant {epsilon} and the dielectric loss {epsilon} and discuss sample-to-sample variations.
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T he spectra confirm that superconductivity is confined to the conducting BEDT-TTF layers, while the Cu[N(CN)$_2$]Br anion layers are insulating. The density of states comprises a twofold superconducting gap, which is attributed to the two separated bands crossing the Fermi surface.
We investigated the infrared optical spectra of an organic dimer Mott insulator $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl, which was irradiated with X-rays. We observed that the irradiation caused a large spectral weight transfer from the mid-infrare d region, where interband transitions in the dimer and Mott-Hubbard bands take place, to a Drude part in a low-energy region; this caused the Mott gap to collapse. The increase of the Drude part indicates a carrier doping into the Mott insulator due to irradiation defects. The strong redistribution of the spectral weight demonstrates that the organic Mott insulator is very close to the phase border of the bandwidth-controlled Mott transition.
141 - K. Sano , T. Sasaki , N. Yoneyama 2010
The effect of disorder on the electronic properties near the Mott transition is studied in an organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br, which is systematically irradiated by X-ray. We observe that X-ray irradiation causes Ande rson-type electron localization due to molecular disorder. The resistivity at low temperatures demonstrates variable range hopping conduction with Coulomb interaction. The experimental results show clearly that the electron localization by disorder is enhanced by the Coulomb interaction near the Mott transition.
The Mott insulator kappa-(BEDT-TTF)2Cu[N(CN)2]Cl consists of molecular dimers arranged on an anisotropic triangular lattice and develops a canted antiferromagnetic ground state. It has recently been suggested that this system features purely electron ic ferroelectricity which requires an electric dipole moment. Optical spectroscopy clearly rules out charge imbalance in this system, which excludes the existence of quantum electric dipoles on the dimers and subsequently a dipolar spin coupling. We suggest that the prominent in-plane dielectric response in kappa-(BEDT-TTF)2Cu[N(CN)2]Cl is due to short-range discommensurations of the antiferromagnetic phase in the temperature range 30 < T < 50 K, and domain wall relaxations at lower temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا