ﻻ يوجد ملخص باللغة العربية
The recently proposed multiferroic state of the charge-transfer salt {kappa}-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and measurements of the dielectric constant on various, differently prepared single crystals. In the majority of crystals we confirm the existence of an order-disorder-type ferroelectric state which coincides with antiferromagnetic order. This phenomenology rules out scenarios which consider an inhomogeneous, short-range-ordered ferroelectric state. Measurements of the dielectric constant and the magnetic susceptibility on the same crystals reveal that both transitions lie very close to each other or even collapse, indicating that both types of order are intimately coupled to each other. We address issues of the frequency dependence of the dielectric constant {epsilon} and the dielectric loss {epsilon} and discuss sample-to-sample variations.
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T
We have in detail characterized the anisotropic charge response of the dimer Mott insulator $kappa$-(BEDT-TTF)$_2$-Cu$_2$(CN)$_3$ by dc conductivity, Hall effect and dielectric spectroscopy. At room temperature the Hall coefficient is positive and cl
The dimer Mott insulator $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ exhibits unusual electrodynamic properties. Numerical investigations of the electronic ground state and the molecular and lattice vibrations reveal the importance of the Cu$_2$(CN)$_3^-$ a
We study the role played by the magnetic frustration in the antiferromagnetic phase of the organic salt kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl. Using the spatially anisotropic triangular Heisenberg model we analyze previous and new performed NMR experim
The electrodynamic response of the organic spin-liquid candidate $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ has been measured in an extremely wide energy range ($10^{-13}$ to 2 eV) as a function of temperature (5 to 300 K). Below the Mott gap, excitations