ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicoidal magnetic order in a clean copper oxide spin chain compound

72   0   0.0 ( 0 )
 نشر من قبل Lucia Capogna
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report susceptibility, specific heat, and neutron diffraction measurements on NaCu$_2$O$_2$, a spin-1/2 chain compound isostructural to LiCu$_2$O$_2$, which has been extensively investigated. Below 13 K, we find a long-range ordered, incommensurate magnetic helix state with a propagation vector similar to that of LiCu$_2$O$_2$. In contrast to the Li analogue, substitutional disorder is negligible in NaCu$_2$O$_2$. We can thus rule out that the helix is induced by impurities, as was claimed on the basis of prior work on LiCu$_2$O$_2$. A spin Hamiltonian with frustrated longer-range exchange interactions provides a good description of both the ordered state and the paramagnetic susceptibility.



قيم البحث

اقرأ أيضاً

290 - M. Raichle , M. Reehuis , G. Andre 2008
Neutron diffraction has been used to determine the magnetic structure of Na$_8$Cu$_5$O$_{10}$, a stoichiometric compound containing chains based on edge-sharing CuO$_4$ plaquettes. The chains are doped with 2/5 hole per Cu site and exhibit long-range commensurate charge order with an onset well above room temperature. Below $T_N = 23$ K, the neutron data indicate long-range collinear magnetic order with a spin density modulation whose propagation vector is commensurate along and incommensurate perpendicular to the chains. Competing interchain exchange interactions are discussed as a possible origin of the incommensurate magnetic order.
We report an experimental study of co, a Mott insulator containing chains of edge-sharing CuO$_4$ plaquettes, by polarized x-ray absorption spectroscopy (XAS), resonant magnetic x-ray scattering (RMXS), magnetic susceptibility, and pyroelectric curr ent measurements. The XAS data show that the valence holes reside exclusively on the Cu$^{2+}$ sites within the copper-oxide spin chains and populate a $d$-orbital polarized within the CuO$_4$ plaquettes. The RMXS measurements confirm the presence of incommensurate magnetic order below a Neel temperature of $T_N = 11.5$ K, which was previously inferred from neutron powder diffraction and nuclear magnetic resonance data. In conjunction with the magnetic susceptibility and XAS data, they also demonstrate a new orbital selection rule for RMXS that is of general relevance for magnetic structure determinations by this technique. Dielectric property measurements reveal the absence of significant ferroelectric polarization below $T_N$, which is in striking contrast to corresponding observations on the isostructural compound lco. The results are discussed in the context of current theories of multiferroicity.
We have investigated the magnetic behavior of the nano crystals, synthesized by high-energy ball-milling, for a well-known geometrically frustrated spin-chain system, Ca3CoRhO6, and compared its magnetic characteristics with those of the bulk form by measuring ac and dc magnetization. The features attributable to the onset of partially disordered antiferromagnetism (characterizing the bulk form) are not seen in the magnetization data of the nano particles; the magnetic moment at high fields in the very low temperature range in the magnetically ordered state gets relatively enhanced in the nano particles. It appears that the ferromagnetic intrachain interaction, judged by the sign of the paramagnetic Curie temperature, is preserved in the nano particles. These trends are opposite to those seen in Ca3Co2O6. However, the complex spin-dynamics as evidenced by large frequency dependence of ac susceptibility is retained in the nano particles as well. Thus, there are some similarities and dissimilarities between the properties of the nano particles and those of the bulk. We believe that these findings would be useful to understand correlation lengths deciding various properties of geometrical frustration and/or spin-chain phenomena.
We report the results of muon-spin spectroscopy ($mu^+$SR) measurements on the staggered molecular spin chain [pym-Cu(NO$_3$)$_2$(H$_2$O)$_2$] (pym = pyrimidine), a material previously described using sine-Gordon field theory. Zero-field $mu^+$SR rev eals a long range magnetically-ordered ground state below a transition temperature $T_mathrm{N}=0.22(1)$ K. Using longitudinal-field (LF) $mu^+$SR we investigate the dynamic response in applied magnetic fields $0< B < 500$ mT and find evidence for ballistic spin transport. Our LF $mu^+$SR measurements on the chiral spin chain [Cu(pym)(H$_2$O)$_4$]SiF$_6 cdot $H$_2$O instead demonstrate one-dimensional spin diffusion and the distinct spin transport in these two systems likely reflects differences in their magnetic excitations.
Using powder neutron diffraction we have discovered an unusual magnetic order-order transition in the Ising spin chain compound Ca3Co2O6. On lowering the temperature an antiferromagnetic phase with propagation vector k=(0.5,-0.5,1) emerges from a hig her temperature spin density wave structure with k=(0, 0, 1.01). This transition occurs over an unprecedented time-scale of several hours and is never complete.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا