ﻻ يوجد ملخص باللغة العربية
We have investigated the magnetic behavior of the nano crystals, synthesized by high-energy ball-milling, for a well-known geometrically frustrated spin-chain system, Ca3CoRhO6, and compared its magnetic characteristics with those of the bulk form by measuring ac and dc magnetization. The features attributable to the onset of partially disordered antiferromagnetism (characterizing the bulk form) are not seen in the magnetization data of the nano particles; the magnetic moment at high fields in the very low temperature range in the magnetically ordered state gets relatively enhanced in the nano particles. It appears that the ferromagnetic intrachain interaction, judged by the sign of the paramagnetic Curie temperature, is preserved in the nano particles. These trends are opposite to those seen in Ca3Co2O6. However, the complex spin-dynamics as evidenced by large frequency dependence of ac susceptibility is retained in the nano particles as well. Thus, there are some similarities and dissimilarities between the properties of the nano particles and those of the bulk. We believe that these findings would be useful to understand correlation lengths deciding various properties of geometrical frustration and/or spin-chain phenomena.
We report the signatures of dynamic spin fluctuations in the layered honeycomb Li$_3$Cu$_2$SbO$_6$ compound, with a 3$d$ S = 1/2 $d^9$ Cu$^{2+}$ configuration, through muon spin rotation and relaxation ($mu$SR) and neutron scattering studies. Our zer
The results of ac and dc magnetic susceptibility isothermal magnetization and heat-capacity measurements as a function of temperature (T) are reported for Sr3NiRhO6 and Sr3NiPtO6 containing magnetic chains arranged in a triangular fashion in the basa
The influence of negative chemical pressure induced by gradual replacement of Ca by Sr as well as of external pressure (up to 10 kbar) on the magnetism of Ca3CoRhO6 has been investigated by magnetization studies. It is found that the solid solution,
The layered FeTe2O5Cl compound was studied by specific-heat, muon spin relaxation, nuclear magnetic resonance, dielectric, as well as neutron and synchrotron x-ray diffraction measurements, and the results were compared to isostructural FeTe2O5Br. We
The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) $rm CuFeO_2$ have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the