ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton-phonon effects in carbon nanotube optical absorption

64   0   0.0 ( 0 )
 نشر من قبل Vasili Perebeinos
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find that the optical properties of carbon nanotubes reflect remarkably strong effects of exciton-phonon coupling. Tight-binding calculations show that a significant fraction of the spectral weight of the absorption peak is transferred to a distinct exciton+phonon sideband, which is peaked at around 200 meV above the main absorption peak. This sideband provides a distinctive signature of the excitonic character of the optical transition. The exciton-phonon coupling is reflected in a dynamical structural distortion, which contributes a binding energy of up to 100 meV. The distortion is surprisingly long-ranged, and is strongly dependent on chirality.



قيم البحث

اقرأ أيضاً

We study the photoabsorption properties of photoactive bulk polymer/ fullerene/nanotube heterojunctions in the near-infrared region. By combining pump-probe spectroscopy and linear response time-dependent density functional theory within the random p hase approximation (TDDFT-RPA) we elucidate the excited state dynamics of the $E_{11}$ transition within (6,5) and (7,5) single-walled carbon nanotubes (SWNTs) and combined with poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C$_{61}$-butyric acid methyl ester (PCBM) in P3HT/PCBM/SWNT blended samples. We find the presence of a photoinduced absorption (PA) peak is related mainly to the width of the photobleach (PB) peak and the charge carrier density of the SWNT system. For mixed SWNT samples, the PB peak is too broad to observe the PA peak, whereas within P3HT/PCBM/SWNT blended samples P3HT acts as a hole acceptor, narrowing the PB peak by exciton delocalization, which reveals a PA peak. Our results suggest that the PA peak originates from a widening of the band gap in the presence of excited electrons and holes. These results have important implications for the development of new organic photovoltaic heterojunctions including SWNTs.
We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.
We present direct experimental observation of exciton-phonon bound states in the photoluminescence excitation spectra of isolated single walled carbon nanotubes in aqueous suspension. The photoluminescence excitation spectra from several distinct sin gle-walled carbon nanotubes show the presence of at least one sideband related to the tangential modes, lying {200 meV} above the main absorption/emission peak. Both the energy position and line shapes of the sidebands are in excellent agreement with recent calculations [PRL {bf 94},027402 (2005)] that predict the existence of exciton-phonon bound states, a sizable spectral weight transfer to these exciton-phonon complexes and that the amount of this transfer depends on the specific nanotube structure and diameter. The observation of these novel exciton-phonon complexes is a strong indication that the optical properties of carbon nanotubes have an excitonic nature and also of the central role played by phonons in describing the excitation and recombination mechanisms in carbon nanotubes.
138 - A. Misra , C. Daraio 2008
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin g has been proven a powerful tool to modify desired nanostructures for technological applications and to form molecular junctions and interconnections between carbon nanotubes. Recent studies showed the high degree of complexity in the creation of direct interconnections between multiwalled and CNTs having dissimilar diameters. Our technique allows for carving a MWCNT into a nanosoldering iron that was demonstrated capable of joining two separated halves of a tube. This approach could easily be extended to the interconnection of two largely dissimilar CNTs, between a CNT and a nanowire or between two nanowires.
Single-walled carbon nanotubes (SWCNTs) are quasi-one-dimensional systems with poor Coulomb screening and enhanced electron-phonon interaction, and are good candidates for excitons and exciton-phonon couplings in metallic state. Here we report back s cattering reflection experiments on individual metallic SWCNTs. An exciton-phonon sideband separated by 0.19 eV from the first optical transition peak is observed in a metallic SWCNT of chiral index (13,10), which provides clear evidences of excitons in metallic SWCNTs. A static dielectric constant of 10 is estimated from the reflectance spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا