ﻻ يوجد ملخص باللغة العربية
A review of the main phenomena related with the linear optical properties of isolated and supported metal nanoparticles is presented. The extinction, absorption and scattering efficiencies are calculated using the Mie theory and the Discrete Dipole Approximation. The origin of the optical spectra is discussed in terms of the size, shape and environment for each nanoparticle. The main optical features of each nanoparticle are identified, showing the tremendous potentiality of optical spectroscopy as a tool of characterization.
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islan
We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations.
The influence of morphology on the optical properties of silver nanoparticles is studied. A general relationship between the surface plasmon resonances and the morphology of each nanoparticle is established. The optical response is investigated for c
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detai
Strain in two-dimensional (2D) transition metal dichalcogenide (TMD) has led to localized states with exciting optical properties, in particular in view of designing one photon sources. The naturally formed of the MoS2 monolayer deposed on hBN substr