ترغب بنشر مسار تعليمي؟ اضغط هنا

Shot noise of large charge quanta in superconductor/semiconductor/superconductor junctions

111   0   0.0 ( 0 )
 نشر من قبل Fernando E. Camino
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. E. Camino




اسأل ChatGPT حول البحث

We have found experimentally that the noise of ballistic electron transport in a superconductor/semiconductor/superconductor junction is enhanced relative to the value given by the general relation, S_V=2eIR^2coth(eV/2kT), for two voltage regions in which this expression reduces to its thermal and shot noise limits. The noise enhancement is explained by the presence of large charge quanta, with effective charge q*=(1+2Delta/eV)e, that generate a noise spectrum S_V=2q*IR^2, as predicted in Phys. Rev. Lett. 76, 3814 (1996). These charge quanta result from multiple Andreev reflections at each junction interface, which are also responsible for the subharmonic gap structure observed in the voltage dependence of the junctions conductance.



قيم البحث

اقرأ أيضاً

We present measurements of current noise and cross-correlations in three-terminal Superconductor-Normal metal-Superconductor (S-N-S) nanostructures that are potential solid-state entanglers thanks to Andreev reflections at the N-S interfaces. The noi se correlation measurements spanned from the regime where electron-electron interactions are relevant to the regime of Incoherent Multiple Andreev Reflection (IMAR). In the latter regime, negative cross-correlations are observed in samples with closely-spaced junctions.
We calculate the zero-temperature differential conductance $dI/dV$ of a voltage-biased one-dimensional junction between a nontopological and a topological superconductor for arbitrary junction transparency using the scattering matrix formalism. We co nsider two representative models for the topological superconductors: (i) spinful $p$-wave and (ii) $s$-wave with spin-orbit coupling and spin splitting. We verify that in the tunneling limit (small junction transparencies) where only single Andreev reflections contribute to the current, the conductance for voltages below the nontopological superconductor gap $Delta_s$ is zero and there are two symmetric conductance peaks appearing at $eV = pm Delta_s$ with the quantized value $(4-pi)2e^2/h$ due to resonant Andreev reflection from the Majorana zero mode. However, when the junction transparency is not small, there is a finite conductance for $e|V| < Delta_s$ arising from multiple Andreev reflections. The conductance at $eV = pm Delta_s$ in this case is no longer quantized. In general, the conductance is particle-hole asymmetric except for sufficiently small transparencies. We further show that, for certain values of parameters, the tunneling conductance from a zero-energy conventional Andreev bound state can be made to mimic the conductance from a true Majorana mode.
Non-linear charge transport in SIS Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An ap plied bias $V_{SD}$ leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge $ne$ traversing the junction, with $n$ integer larger than $2{Delta}/eV_{SD}$ and ${Delta}$ the superconducting order parameter. Exceptionally, just above the gap, $eV_{SD}>2{Delta}$, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles; each with energy dependent charge, being a superposition of an electron and a hole. Employing shot noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge $q=e^*/e=n$, with $n=1-4$; thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region $eV_{SD}{approx}2{Delta}$, we found a reproducible and clear dip in the extracted charge to $q{approx}0.6$, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.
Coherence of superconducting qubits can be improved by implementing designs that protect the parity of Cooper pairs on superconducting islands. Here, we introduce a parity-protected qubit based on voltage-controlled semiconductor nanowire Josephson j unctions, taking advantage of the higher harmonic content in the energy-phase relation of few-channel junctions. A symmetric interferometer formed by two such junctions, gate-tuned into balance and frustrated by a half-quantum of applied flux, yields a cos(2{phi}) Josephson element, reflecting coherent transport of pairs of Cooper pairs. We demonstrate that relaxation of the qubit can be suppressed tenfold by tuning into the protected regime.
Motivated by recent experiments searching for Majorana zero modes in tripartite semiconductor nanowires with epitaxial superconductor and ferromagnetic-insulator layers, we explore the emergence of topological superconductivity in such devices for pa radigmatic arrangements of the three constituents. Accounting for the competition between magnetism and superconductivity, we treat superconductivity self consistently and describe the electronic properties, including the superconducting and ferromagnetic proximity effects, within a direct wave-function approach. We conclude that the most viable mechanism for topological superconductivity relies on a superconductor-semiconductor-ferromagnet arrangement of the constituents, in which spin splitting and superconductivity are independently induced in the semiconductor by proximity and superconductivity is only weakly affected by the ferromagnetic insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا