ﻻ يوجد ملخص باللغة العربية
We calculate the zero-temperature differential conductance $dI/dV$ of a voltage-biased one-dimensional junction between a nontopological and a topological superconductor for arbitrary junction transparency using the scattering matrix formalism. We consider two representative models for the topological superconductors: (i) spinful $p$-wave and (ii) $s$-wave with spin-orbit coupling and spin splitting. We verify that in the tunneling limit (small junction transparencies) where only single Andreev reflections contribute to the current, the conductance for voltages below the nontopological superconductor gap $Delta_s$ is zero and there are two symmetric conductance peaks appearing at $eV = pm Delta_s$ with the quantized value $(4-pi)2e^2/h$ due to resonant Andreev reflection from the Majorana zero mode. However, when the junction transparency is not small, there is a finite conductance for $e|V| < Delta_s$ arising from multiple Andreev reflections. The conductance at $eV = pm Delta_s$ in this case is no longer quantized. In general, the conductance is particle-hole asymmetric except for sufficiently small transparencies. We further show that, for certain values of parameters, the tunneling conductance from a zero-energy conventional Andreev bound state can be made to mimic the conductance from a true Majorana mode.
The possibility of inducing superconductivity in type-I Weyl semimetal through coupling its surface to a superconductor was investigated. A single crystal of NbP, grown by chemical vapor transport method, was carefully characterized by XRD, EDX, SEM,
Topological superconductors supporting Majorana Fermions with non-abelian statistics are presently a subject of intense theoretical and experimental effort. It has been proposed that the observation of a half-frequency or a fractional Josephson effec
We calculate the tunneling conductance of a graphene normal metal-insulator-superconductor (NIS) junction with a barrier of thickness $d$ and with an arbitrary voltage $V_0$ applied across the barrier region. We demonstrate that the tunneling conduct
We have found experimentally that the noise of ballistic electron transport in a superconductor/semiconductor/superconductor junction is enhanced relative to the value given by the general relation, S_V=2eIR^2coth(eV/2kT), for two voltage regions in
We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperatu