ﻻ يوجد ملخص باللغة العربية
Formation of MgB2 by reactions of Mg with B6Si and Mg with B were compared, the former also producing Mg2Si as a major product. Compared to the binary system, the ternary reactions for identical time and temperature were more complete at 750 C and below, as indicated by higher diamagnetic shielding and larger x-ray diffraction peak intensities relative to those of Mg. MgB2 could be produced at temperatures as low as 450 C by the ternary reaction. Analyses by electron microscopy, x-ray diffraction, and of the upper critical field show that Si does not enter the MgB2 phase.
A Hybrid Physical-Chemical Vapour Deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB2 thin films and thick films at various temperatures. We are able to grow superconducting MgB2 th
A commercially available calorimeter has been used to investigate the specific heat of a high-quality kn single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 , mathrm{K} leq T leq 0.54 , mathrm{K}$
Here we describe the results of an atomic resolution study of the structure and composition of both the interior of the grains, and the grain boundaries in polycrystalline MgB2. We find that there is no oxygen within the bulk of the grains but signif
Core level X-ray Photoelectron Spectroscopy (XPS) studies have been carried out on polycrystalline MgB_2 pellets over the whole binding energy range with a view to having an idea of the charge state of Magnesium (Mg). We observe 3 distinct peaks in M
Using a membrane-driven diamond anvil cell and both ac magnetic susceptibility and electrical resistivity measurements, we have characterized the superconducting phase diagram of elemental barium to pressures as high as 65 GPa. We have determined the