ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Photoelectron Spectroscopy Studies of MgB2 for Valence State of Mg

186   0   0.0 ( 0 )
 نشر من قبل Dr. Sujit Kumar Bandyopadhyay
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Core level X-ray Photoelectron Spectroscopy (XPS) studies have been carried out on polycrystalline MgB_2 pellets over the whole binding energy range with a view to having an idea of the charge state of Magnesium (Mg). We observe 3 distinct peaks in Mg 2p spectra at 49.3 eV (trace), 51.3 eV (major) and 54.0 eV (trace), corresponding to metallic Mg, MgB_2 and MgCO_3 or, divalent Mg species respectively. Similar trend has been noticed in Mg 2s spectra. The binding energy of Mg in MgB_2 is lower than that corresponding to Mg(2+), indicative of the fact that the charge state of Mg in MgB2 is less than (2+). Lowering of the formal charge of Mg promotes the sigma to pi electron transfer in Boron (B) giving rise to holes on the top of the sigma-band which are involved in coupling with B E_2g phonons for superconductivity. Through this charge transfer, Mg plays a positive role in hole superconductivity. B 1s spectra consist of 3 peaks corresponding to MgB_2, boron and B_2O_3. There is also evidence of MgO due to surface oxidation as seen from O 1s spectra.



قيم البحث

اقرأ أيضاً

In the present report, we investigate various properties of the Nb2PdS5 superconductor. Scanning electron microscopy displayed slabs like laminar growth of Nb2PdS5while X-ray photoelectron spectroscopy exhibited the hybridization of Sulphur (2p) with both Palladium (3d)and Niobium (3d). High field (140kOe) magneto-transport measurements revealed that superconductivity (Tc onset =7K and Tc R = 0 = 6.2K) of the studied Nb2PdS5material is quite robust against magnetic field with the upper critical field (Hc2) outside the Pauli paramagnetic limit. Thermally activated flux flow (TAFF) of the compound showed that resistivity curves follow Arrhenius behaviour. The activation energy for Nb2PdS5 is found to decrease from 15.15meV at 10kOe to 2.35meV at 140kOe. Seemingly, the single vortex pinning is dominant in low field regions, while collective pinning is dominant in high field region. The temperature dependence of AC susceptibility confirmed the Tc at 6K, further varying amplitude and frequency showed well coupled granular nature of superconductivity. The lower critical field (Hc1) is extracted from DC magnetisation measurements at various T below Tc. It is found that Hc1(T) of Nb2PdS5 material seemingly follows the multiband nature of superconductivity.
The bulk polycrystalline sample FeSe1/2Te1/2 is synthesized by solid state reaction route in an evacuated sealed quartz tube at 750 oC. The presence of superconductivity is confirmed through magnetization/thermoelectric/resistivity studies. It is fou nd that the superconducting transition temperature (Tc) is around 12 K. Heat capacity (Cp) of superconducting FeSe1-xTex exhibited a hump near Tc, instead of well defined Lambda transition. X-ray Photo electron spectroscopy (XPS) studies revealed well defined positions for divalent Fe, Se and Te but with sufficient hybridization of Fe (2p) and Se/Te (3d) core levels. In particular divalent Fe is shifted to higher BE (binding energy) and Se and Te to lower. The situation is similar to that as observed earlier for famous Cu based HTSc (High Tc superconductors), where Cu (3d) orbital hybridizes with O (2p). We also found the satellite peak of Fe at 712.00 eV, which is attributed to charge carrier localization induced by Fe at 2c site.
In order to probe the changes in the valence state and magnetic properties of Eu metal under extreme pressure, x-ray absorption near-edge spectroscopy, x-ray magnetic circular dichroism and synchrotron Mossbauer spectroscopy experiments have been car ried out. The Mossbauer isomer shift exhibits an anomalous pressure dependence, passing through a maximum near 20 GPa. Density functional theory has been applied to give insight into the pressure-induced changes in both Eus electronic structure and Mossbauer isomer shift. Contrary to previous reports, Eu is found to remain nearly divalent to the highest pressures reached (87 GPa) with magnetic order persisting to at least 50 GPa. These results should lead to a better understanding of the nature of the superconducting state found above 75 GPa and of the sequence of structural phase transitions observed to 92 GPa.
We present a detailed magneto-optical investigation of the magnetic flux penetration in polycrystalline MgB2 slabs made by direct reaction of B and Mg. Our results unambiguously indicate a uniform, Bean critical state magnetization behavior with almo st no electromagnetic granularity. From the measured magnetic flux profiles we were able to extract the temperature dependence of the critical current density Jc(T). The Jc(T) value reaches 1.8x10^5 A/cm2 at 10K and 0.12T, in good agreement with global magnetization measurements.
111 - G. P. Zhang 2003
Angle-resolved soft x-ray measurements made at the boron K-edge in single crystal MgB2 provide new insights into the B-2p local partial density of both unoccupied and occupied band states. The strong variation of absorption with incident angle of exc iting x-rays permits the clear separation of contributions from sigma states in the boron plane and pi states normal to the plane. A careful comparison with theory accurately determines the energy of selected critical $k$ points in the conduction band. Resonant inelastic x-ray emission at an incident angle of 15 degrees shows a large enhancement of the emission spectra within about 0.5 eV of the Fermi level that is absent at 45 degrees and is much reduced at 60 degrees. We conclude that momentum transferred from the resonant inelastic x-ray scattering (RIXS) process couples empty and filled states across the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا