ﻻ يوجد ملخص باللغة العربية
We realize an interferometer with an atomic Fermi gas trapped in an optical lattice under the influence of gravity. The single-particle interference between the eigenstates of the lattice results in macroscopic Bloch oscillations of the sample. The absence of interactions between fermions allows a time-resolved study of many periods of the oscillations, leading to a sensitive determination of the acceleration of gravity. The experiment proves the superiorness of non interacting fermions with respect to bosons for precision interferometry, and offers a way for the measurement of forces with microscopic spatial resolution.
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long m
We study population imbalanced Fermi mixtures under quasi-two-dimensional confinement at zero temperature. Using mean-field theory and the local-density approximation, we study the ground state configuration throughout the BEC-BCS crossover. We find
We consider a superfluid of trapped fermionic atoms and study the single vortex solution in the Ginzburg-Landau regime. We define simple analytical estimates for the main characteristics of the system, such as the vortex core size, temperature regime
Due to Pauli blocking of intermediate states, the scattering matrix (or $T$ matrix) of two fermionic atoms in a Fermi gas becomes different from that of two atoms in free space. This effect becomes particularly important near a Feshbach resonance, wh
Superconductivity and superfluidity of fermions require, within the BCS theory, matching of the Fermi energies of the two interacting Fermion species. Difference in the number densities of the two species leads either to a normal state, to phase sepa