ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-BCS superfluidity in trapped ultracold Fermi gases

79   0   0.0 ( 0 )
 نشر من قبل Jami Kinnunen
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity and superfluidity of fermions require, within the BCS theory, matching of the Fermi energies of the two interacting Fermion species. Difference in the number densities of the two species leads either to a normal state, to phase separation, or - potentially - to exotic forms of superfluidity such as FFLO-state, Sarma state or breached pair state. We consider ultracold Fermi gases with polarization, i.e. spin-density imbalance. We show that, due to the gases being trapped and isolated from the environment in terms of particle exchange, exotic forms of superfluidity appear as a shell around the BCS-superfluid core of the gas and, for large density imbalance, in the core as well. We obtain these results by describing the effect of the trapping potential by using the Bogoliubov-de Gennes equations. For comparison to experiments, we calculate also the condensate fraction, and show that, in the center of the trap, a polarized superfluid leads to a small dip in the central density difference. We compare the results to those given by local density approximation and find qualitatively different behavior.



قيم البحث

اقرأ أيضاً

We present detailed numerical and analytical investigations of the nonequilibrium dynamics of spin-polarized ultracold Fermi gases following a sudden switching-on of the atom-atom pairing coupling strength. Within a time-dependent mean-field approach we show that on increasing the imbalance it takes longer for pairing to develop, the period of the nonlinear oscillations lengthens, and the maximum value of the pairing amplitude decreases. As expected, dynamical pairing is suppressed by the increase of the imbalance. Eventually, for a critical value of the imbalance the nonlinear oscillations do not even develop. Finally, we point out an interesting temperature-reentrant behavior of the exponent characterizing the initial instability.
Using arguments based on sum rules, we derive a general result for the average shifts of rf lines in Fermi gases in terms of interatomic interaction strengths and two-particle correlation functions. We show that near an interaction resonance shifts v ary inversely with the atomic scattering length, rather than linearly as in dilute gases, thus accounting for the experimental observation that clock shifts remain finite at Feshbach resonances.
134 - J. Kinnunen , L. M. Jensen , 2005
We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.
97 - Rudolf Grimm 2007
A review of recent BEC-BCS crossover experiments in ultracold Fermi gases is given with particular emphasis on the work performed with lithium-6 at the University of Innsbruck.
149 - Wei Zhang , L.-M. Duan 2008
We consider a trapped Fermi gas with population imbalance at finite temperatures and map out the detailed phase diagram across a wide Feshbach resonance. We take the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state into consideration and minimize the the rmodynamical potential to ensure stability. Under the local density approximation, we conclude that a stable LOFF state is present only on the BCS side of the Feshbach resonance, but not on the BEC side or at unitarity. Furthermore, even on the BCS side, a LOFF state is restricted at low temperatures and in a small region of the trap, which makes a direct observation of LOFF state a challenging task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا