ﻻ يوجد ملخص باللغة العربية
We measure the spin splitting in a magnetic field $B$ of localized states in single-electron transistors using a new method, inelastic spin-flip cotunneling. Because it involves only internal excitations, this technique gives the most precise value of the Zeeman energy $Delta = ZeemanE$. In the same devices we also measure the splitting with $B$ of the Kondo peak in differential conductance. The Kondo splitting appears only above a threshold field as predicted by theory. However, the magnitude of the Kondo splitting at high fields exceeds $2 ZeemanE$ in disagreement with theory.
Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment has been repeated with electrons in vacuum up to the more massive $C_{60}$ molecules. Mesoscopic rings threaded by a magnetic flux provide the
We demonstrate a tunable negative differential resistance controlled by spin blockade in single electron transistors. The single electron transistors containing a few electrons and spin polarized source and drain contacts were formed in GaAs/GaAlAs h
We report Kondo resonances in the conduction of single-molecule transistors based on transition metal coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely metallic systems. The observed gate dependence o
Kondo effect offers an important paradigm to understand strong correlated many-body physics. Although under intensive study, some of important properties of Kondo effect, in systems where both itinerant coupling and localized coupling play significan
We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistors with a GaMnAs magnetic back-gate. Changing