ﻻ يوجد ملخص باللغة العربية
We suggest a method to experimentally obtain two-dimensional matter-wave discrete solitons with a {it self-repulsive} BEC in optical lattices. At the edge of the Brillouin zone, a wave packet effective mass is negative which could be treated as inversion of the nonlinearity sign. Above critical nonlinearity this makes the wave packets collapse partially into localized modes with a chemical potential located in the gap between the first and the second bands. This critical nonlinearity is also associated with the smallest nonlinearity for which the discrete solitons are possible in the gap. Extensive numerical simulations for square and asymmetric honeycomb lattices in continuous model illustrate every stage of the process.
We show how access to sufficiently flexible trapping potentials could be exploited in the generation of three-dimensional atomic bright matter-wave solitons. Our proposal provides a route towards producing bright solitonic states with good fidelity,
Confining a colloidal crystal within a long narrow channel produced by two parallel walls can be used to impose a meso-scale superstructure of a predominantly mechanical elastic character [Chui et al., EPL 2008, 83, 58004]. When the crystal is compre
We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species inter
We present a comprehensive analysis of the form and interaction of dipolar bright solitons across the full parameter space afforded by dipolar Bose-Einstein condensates, revealing the rich behaviour introduced by the non-local nonlinearity. Working w
Laser cooled and trapped ions can crystallize and feature discrete solitons, that are nonlinear, topologically-protected configurations of the Coulomb crystal. Such solitons, as their continuum counterparts, can move within the crystal, while their d