ﻻ يوجد ملخص باللغة العربية
We show how access to sufficiently flexible trapping potentials could be exploited in the generation of three-dimensional atomic bright matter-wave solitons. Our proposal provides a route towards producing bright solitonic states with good fidelity, in contrast to, for example, a non-adiabatic sweeping of an applied magnetic field through a Feshbach resonance.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton
We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potential
We present a comprehensive analysis of the form and interaction of dipolar bright solitons across the full parameter space afforded by dipolar Bose-Einstein condensates, revealing the rich behaviour introduced by the non-local nonlinearity. Working w
We consider the linear stability of chiral matter-wave solitons described by a density-dependent gauge theory. By studying the associated Bogoliubov-de Gennes equations both numerically and analytically, we find that the stability problem effectively
Reflection of wave packets from downward potential steps and attractive potentials, known as a quantum reflection, has been explored for bright matter-wave solitons with the main emphasis on the possibility to trap them on top of a pedestal-shaped po