ﻻ يوجد ملخص باللغة العربية
We present a comprehensive theoretical treatment of the effect of electron-phonon interactions in molecular transistors, including both quantal and classical limits and we study both equilibrated and out of equilibrium phonons. We present detailed results for conductance, noise and phonon distribution in two regimes. One involves temperatures large as compared to the rate of electronic transitions on and off the dot; in this limit our approach yields classical rate equations, which are solved numerically for a wide range of parameters. The other regime is that of low temperatures and weak electron-phonon coupling where a perturbative approximation in the Keldysh formulation can be applied. The interplay between the phonon-induced renormalization of the density of states on the quantum dot and the phonon-induced renormalization of the dot-lead coupling is found to be important. Whether or not the phonons are able to equilibrate in a time rapid compared to the transit time of an electron through the dot is found to affect the conductance. Observable signatures of phonon equilibration are presented. We also discuss the nature of the low-T to high-T crossover.
A rate equation formalism is used to determine the effect of electron-phonon coupling on the conductance of a molecule. Interplay between the phonon-induced renormalization of the density of states on the quantum dot and the phonon-induced renormaliz
The aim of this work is to describe the behavior of a device capable to generate high frequency (~THz) acoustic phonons. This device consists in a GaAs-AlGaAs double barrier heterostructure that, when an external bias is applied, produces a high rate
Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. u
We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic and phononic timescales, we investigat
The electrostatic gating effects on molecular transistors are investigated using the density functional theory (DFT) combined with the nonequilibrium Greens function (NEGF) method. When molecular energy levels are away from the Fermi energy they can