ﻻ يوجد ملخص باللغة العربية
The electrostatic gating effects on molecular transistors are investigated using the density functional theory (DFT) combined with the nonequilibrium Greens function (NEGF) method. When molecular energy levels are away from the Fermi energy they can be linearly shifted by the gate voltage, which is consistent with recent experimental observations [Nature 462, 1039 (2009)]. However, when they move near to the Fermi energy (turn-on process), the shifts become extremely small and almost independent of the gate voltage. The fact that the conductance may be beyond the gate control in the ON state will challenge the implementation of molecular transistors.
A rate equation formalism is used to determine the effect of electron-phonon coupling on the conductance of a molecule. Interplay between the phonon-induced renormalization of the density of states on the quantum dot and the phonon-induced renormaliz
Diamond has attracted attention as a next-generation semiconductor because of its various exceptional properties such as a wide bandgap and high breakdown electric field. Diamond field effect transistors, for example, have been extensively investigat
We investigate by low-temperature transport experiments the sub-threshold behavior of triple-gate silicon field-effect transistors. These three-dimensional nano-scale devices consist of a lithographically defined silicon nanowire surrounded by a gate
We report a method for making horizontal wrap-gate nanowire transistors with up to four independently controllable wrap-gated segments. While the step up to two independent wrap-gates requires a major change in fabrication methodology, a key advantag
We calculate the conductances and the tunneling magnetoresistance (TMR) of double magnetic tunnel junctions, taking as a model example junctions composed of Fe/ZnSe/Fe/ZnSe/Fe (001). The calculations are done as a function of the gate voltage applied