ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Fermi surface topology on the quasiparticle spectrum in the vortex state

350   0   0.0 ( 0 )
 نشر من قبل Siegfried Graser
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the influence of Fermi surface topology on the quasiparticle density of states in the vortex state of type II superconductors. We observe that the field dependence and the shape of the momentum and spatially averaged density of states is affected significantly by the topology of the Fermi surface. We show that this behavior can be understood in terms of characteristic Fermi surface functions and that an important role is played by the number of points on the Fermi surface at which the Fermi velocity is directed parallel to the magnetic field. A critical comparison is made with a broadened BCS type density of states, that has been used frequently in analysis of tunneling data. We suggest a new formula as a replacement for the broadened BCS model for the special case of a cylindrical Fermi surface. We apply our results to the two gap superconductor MgB$_2$ and show that in this particular case the field dependence of the partial densities of states of the two gaps behaves very differently due to the different topologies of the corresponding Fermi surfaces, in qualitative agreement with recent tunneling experiments.



قيم البحث

اقرأ أيضاً

We theoretically study the dependence of the quasiparticle (QP) scattering rate $varGamma$ on the uniaxial anisotropy of a Fermi surface with changing the magnetic field angle $alpha_{rm M}$. We consider the QP scattering due to the non-magnetic impu rities inside a single vortex core. The field-angle dependence of the quasiparticle scattering rate $varGamma(alpha_{rm M})$ is sensitive to the sign-change of the pair potential. We show that with increasing the two dimensionality of the system, $varGamma(alpha_{rm M})$ reflects more clearly whether there is the sign-change in the pair potential.
The effect of vortices on quasiparticle transport in cuprate superconductors was investigated by measuring the low temperature thermal conductivity of YBa_2Cu_3O_6.9 in magnetic fields up to 8 T. The residual linear term (as T to 0) is found to incre ase with field, directly reflecting the occupation of extended quasiparticle states. A study for different Zn impurity concentrations reveals a good agreement with recent calculations for a d-wave superconductor, thereby shedding light on the nature of scattering by both impurities and vortices. It also provides a quantitative measure of the gap near the nodes.
123 - Y. Xia , D. Qian , L. Wray 2009
We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the X-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our results collectively reveal that the Fe1+xTe series is dramatically different from the undoped phases of the high Tc pnictides and likely harbor unusual mechanism for superconductivity and quantum magnetic order.
In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revea led the existence of a Fermi surface akin to normal metals, comprising fermionic carriers that undergo orbital quantization. However, the unexpectedly small size of the observed carrier pocket leaves open a variety of possibilities as to the existence or form of any underlying magnetic order, and its relation to d-wave superconductivity. Here we present quantum oscillations in the magnetisation (the de Haas-van Alphen or dHvA effect) observed in superconducting YBa2Cu3O6.51 that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole-doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density-wave scenario with spiral or related modulated magnetic order, consistent with experimental observations.
We have measured the low temperature heat capacity Cp and microwave surface impedance Zs in the vortex state of YNi_2B_2C. In contrast to conventional s-wave superconductors, Cp shows a nearly sqrt H-dependence. This sqrt H-dependence persists even a fter the introduction of the columnar defects which change the electronic structure of the vortex core regime dramatically and strongly disturb the regular vortex lattice. On the other hand, flux flow resistivity obtained from Zs is nearly proportional to H. Taken together, these results indicate that the vortex state of YNi_2B_2C is fundamentally different from the conventional s-wave counterparts, in that the delocalized quasiparticle states around the vortex core play a much more important role, similar to d-wave superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا