ﻻ يوجد ملخص باللغة العربية
We study the influence of Fermi surface topology on the quasiparticle density of states in the vortex state of type II superconductors. We observe that the field dependence and the shape of the momentum and spatially averaged density of states is affected significantly by the topology of the Fermi surface. We show that this behavior can be understood in terms of characteristic Fermi surface functions and that an important role is played by the number of points on the Fermi surface at which the Fermi velocity is directed parallel to the magnetic field. A critical comparison is made with a broadened BCS type density of states, that has been used frequently in analysis of tunneling data. We suggest a new formula as a replacement for the broadened BCS model for the special case of a cylindrical Fermi surface. We apply our results to the two gap superconductor MgB$_2$ and show that in this particular case the field dependence of the partial densities of states of the two gaps behaves very differently due to the different topologies of the corresponding Fermi surfaces, in qualitative agreement with recent tunneling experiments.
We theoretically study the dependence of the quasiparticle (QP) scattering rate $varGamma$ on the uniaxial anisotropy of a Fermi surface with changing the magnetic field angle $alpha_{rm M}$. We consider the QP scattering due to the non-magnetic impu
The effect of vortices on quasiparticle transport in cuprate superconductors was investigated by measuring the low temperature thermal conductivity of YBa_2Cu_3O_6.9 in magnetic fields up to 8 T. The residual linear term (as T to 0) is found to incre
We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and
In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revea
We have measured the low temperature heat capacity Cp and microwave surface impedance Zs in the vortex state of YNi_2B_2C. In contrast to conventional s-wave superconductors, Cp shows a nearly sqrt H-dependence. This sqrt H-dependence persists even a