ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of uniaxially anisotropic Fermi surface on the quasiparticle scattering inside a vortex core in unconventional superconductors

223   0   0.0 ( 0 )
 نشر من قبل Yoichi Higashi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study the dependence of the quasiparticle (QP) scattering rate $varGamma$ on the uniaxial anisotropy of a Fermi surface with changing the magnetic field angle $alpha_{rm M}$. We consider the QP scattering due to the non-magnetic impurities inside a single vortex core. The field-angle dependence of the quasiparticle scattering rate $varGamma(alpha_{rm M})$ is sensitive to the sign-change of the pair potential. We show that with increasing the two dimensionality of the system, $varGamma(alpha_{rm M})$ reflects more clearly whether there is the sign-change in the pair potential.



قيم البحث

اقرأ أيضاً

We theoretically investigate the quasiparticle scattering rate $varGamma$ inside a vortex core in the existence of non-magnetic impurities distributed randomly in a superconductor. We show that the dependence of $varGamma$ on the magnetic field direc tion is sensitive to the sign of the pair potential. The behavior of $varGamma$ is quite different between an s-wave and a d-wave pair potential, where these are assumed to have the same amplitude anisotropy, but a sign change only for the d-wave one. It is suggested that measurements of the microwave surface impedance with changing applied-field directions would be used for the phase-sensitive identification of pairing symmetry.
349 - S. Graser , T. Dahm , N. Schopohl 2003
We study the influence of Fermi surface topology on the quasiparticle density of states in the vortex state of type II superconductors. We observe that the field dependence and the shape of the momentum and spatially averaged density of states is aff ected significantly by the topology of the Fermi surface. We show that this behavior can be understood in terms of characteristic Fermi surface functions and that an important role is played by the number of points on the Fermi surface at which the Fermi velocity is directed parallel to the magnetic field. A critical comparison is made with a broadened BCS type density of states, that has been used frequently in analysis of tunneling data. We suggest a new formula as a replacement for the broadened BCS model for the special case of a cylindrical Fermi surface. We apply our results to the two gap superconductor MgB$_2$ and show that in this particular case the field dependence of the partial densities of states of the two gaps behaves very differently due to the different topologies of the corresponding Fermi surfaces, in qualitative agreement with recent tunneling experiments.
Topological superconductors, such as noncentrosymmetric superconductors with strong spin-orbit coupling, exhibit protected zero-energy surface states, which possess an intricate helical spin structure. We show that this nontrival spin character of th e surface states can be tested experimentally from the absence of certain backscattering processes in Fourier-transform scanning tunneling measurements. A detailed theoretical analysis is given of the quasiparticle scattering interference on the surface of both nodal and fully gapped topological superconductors with different crystal point-group symmetries. We determine the universal features in the interference patterns resulting from magnetic and nonmagnetic scattering processes of the surface quasiparticles. It is shown that Fourier-transform scanning tunneling spectroscopy allows us to uniquely distinguish among different types of topological surface states, such as zero-energy flat bands, arc surface states, and helical Majorana modes, which in turn provides valuable information on the spin and orbital pairing symmetry of the bulk superconducting state.
We present detailed experimental and theoretical investigations of hotspots produced by trapped vortex bundles and their effect on the radio-frequency (rf) surface resistance $R_s$ of superconductors at low temperatures. Our measurements of $R_s$ com bined with the temperature mapping and laser scanning of a 2.36 mm thick Nb plate incorporated into a 3.3 GHz Nb resonator cavity cooled by the superfluid He at 2 K, revealed spatial scales and temperature distributions of hotspots and showed that they can be moved or split by thermal gradients produced by the scanning laser beam. These results, along with the observed hysteretic field dependence of $R_s$ which can be tuned by the scanning laser beam, show that the hotspots in our Nb sample are due to trapped vortex bundles which contain $sim 10^6$ vortices spread over regions $sim 0.1-1$ cm. We calculated the frequency dependence of the rf power dissipated by oscillating vortex segments trapped between nanoscale pinning centers, taking into account all bending modes and the nonlocal line tension of the vortex driven by rf Meissner currents. We also calculated the temperature distributions caused by trapped vortex hotspots, and suggested a method of reconstructing the spatial distribution of vortex dissipation sources from the observed temperature maps. Vortex hotspots can dominate the residual surface resistance at low temperatures and give rise to a significant dependence of $R_s$ on the rf field amplitude $H_p$, which can have important implications for the rf resonating cavities used in particle accelerators and for thin film structures used in quantum computing and photon detectors.
High-T_c superconductors in small magnetic fields directed away from the crystal symmetry axes have been found to exhibit inhomogeneous chains of flux lines (vortices), in contrast to the usual regular triangular flux-line lattice. We review the expe rimental observations of these chains, and summarize the theoretical background that explains their appearance. We treat separately two classes of chains: those that appear in superconductors with moderate anisotropy due to an attractive part of the interaction between tilted flux lines, and those with high anisotropy where the tilted magnetic flux is created by two independent and perpendicular crossing lattices. In the second case it is the indirect attraction between a flux line along the layers (Josephson vortex) and a flux line perpendicular to the layers (pancake vortex stack) that leads to the formation of chains of the pancake vortex stacks. This complex system contains a rich variety of phenomena, with several different equilibrium phases, and an extraordinary dynamic interplay between the two sets of crossing vortices. We compare the theoretical predictions of these phenomena with the experimental observations made to date. We also contrast the different techniques used to make these observations. While it is clear that this system forms a wonderful playground for probing the formation of structures with competing interactions, we conclude that there are important practical implications of the vortex chains that appear in highly anisotropic superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا