ﻻ يوجد ملخص باللغة العربية
We propose a generalization of the Ornstein-Uhlenbeck process in 1+1 dimensions which is the product of a temporal Ornstein-Uhlenbeck process with a spatial one and has exponentially decaying autocorrelation. The generalized Langevin equation of the process, the corresponding Fokker-Planck equation, and a discrete integral algorithm for numerical simulation is given. The process is an alternative to a recently proposed spatiotemporal correlated model process [J. Garcia-Ojalvo et al., Phys. Rev. A 46, 4670 (1992)] for which we calculate explicitely the hitherto not known autocorrelation function in real space.
Simple analytically solvable models are proposed exhibiting 1/f spectrum in wide range of frequency. The signals of the models consist of pulses (point process) which interevent times fluctuate about some average value, obeying an autoregressive proc
We study directed rigidity percolation (equivalent to directed bootstrap percolation) on three different lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at p=1, while the augmented trian
The percolation behaviour during the deposit formation, when the spanning cluster was formed in the substrate plane, was studied. Two competitive or mixed models of surface layer formation were considered in (1+1)-dimensional geometry. These models a
We derive a selection rule among the $(1+1)$-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete $mathbb{Z}_2$ symmetry found by Gepner and Witten. In the presence of both the SU(2) and $mathbb{Z}_2$ symmetries,
Zero temperature limit in (1+1) directed polymers with finite range correlated random potential is studied. In terms of the standard replica technique it is demonstrated that in this limit the considered system reveals the one-step replica symmetry b