ﻻ يوجد ملخص باللغة العربية
We derive a selection rule among the $(1+1)$-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete $mathbb{Z}_2$ symmetry found by Gepner and Witten. In the presence of both the SU(2) and $mathbb{Z}_2$ symmetries, a renormalization-group flow is possible between level-$k$ and level-$k$ Wess-Zumino-Witten theories only if $kequiv k mod{2}$. This classifies the Lorentz-invariant, SU(2)-symmetric critical behavior into two symmetry-protected categories corresponding to even and odd levels,restricting possible gapless critical behavior of translation-invariant quantum spin chains.
We study directed rigidity percolation (equivalent to directed bootstrap percolation) on three different lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at p=1, while the augmented trian
We propose a generalization of the Ornstein-Uhlenbeck process in 1+1 dimensions which is the product of a temporal Ornstein-Uhlenbeck process with a spatial one and has exponentially decaying autocorrelation. The generalized Langevin equation of the
In the last few years it was realized that every fermionic theory in 1+1 dimensions is a generalized Jordan-Wigner transform of a bosonic theory with a non-anomalous $mathbb{Z}_2$ symmetry. In this note we determine how the boundary states are mapped
We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate
We revisit the two-dimensional quantum Ising model by computing renormalization group flows close to its quantum critical point. The low but finite temperature regime in the vicinity of the quantum critical point is squashed between two distinct non-