ترغب بنشر مسار تعليمي؟ اضغط هنا

Equation of state of a seven-dimensional hard-sphere fluid. Percus-Yevick theory and molecular dynamics simulations

101   0   0.0 ( 0 )
 نشر من قبل Andres Santos
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Robles -




اسأل ChatGPT حول البحث

Following the work of Leutheusser [Physica A 127, 667 (1984)], the solution to the Percus-Yevick equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of the equation of state for the fluid taking both the virial and the compressibility routes. An analysis of the virial coefficients and the determination of the radius of convergence of the virial series are carried out. Molecular dynamics simulations of the same system are also performed and a comparison between the simulation results for the compressibility factor and theoretical expressions for the same quantity is presented.



قيم البحث

اقرأ أيضاً

Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E textbf{83}, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms $hat{c}_{ij}(k)$ of the direct correlation functions defined by the OZ relation. From the analysis of the poles of $hat{c}_{ij}(k)$ we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
163 - Jared Callaham , Jon Machta 2017
Population annealing is a sequential Monte Carlo scheme well-suited to simulating equilibrium states of systems with rough free energy landscapes. Here we use population annealing to study a binary mixture of hard spheres. Population annealing is a p arallel version of simulated annealing with an extra resampling step that ensures that a population of replicas of the system represents the equilibrium ensemble at every packing fraction in an annealing schedule. The algorithm and its equilibration properties are described and results are presented for a glass-forming fluid composed of a 50/50 mixture of hard spheres with diameter ratio of 1.4:1. For this system, we obtain precise results for the equation of state in the glassy regime up to packing fractions $varphi approx 0.60$ and study deviations from the BMCSL equation of state. For higher packing fractions, the algorithm falls out of equilibrium and a free volume fit predicts jamming at packing fraction $varphi approx 0.667$. We conclude that population annealing is an effective tool for studying equilibrium glassy fluids and the jamming transition.
171 - M. Lopez de Haro , S. B. Yuste , 2007
An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consisten t formulation, thus improving and extending the known analytical results of the Percus-Yevick theory. Approximate expressions for the contact values of the radial distribution functions and the corresponding analytical equations of state are also discussed. Extensions of this methodology to related systems, such as sticky hard spheres and square-well fluids, as well as its use in connection with the perturbation theory of fluids are briefly addressed.
We use the Percus-Yevick approach in the chemical-potential route to evaluate the equation of state of hard hyperspheres in five dimensions. The evaluation requires the derivation of an analytical expression for the contact value of the pair distribu tion function between particles of the bulk fluid and a solute particle with arbitrary size. The equation of state is compared with those obtained from the conventional virial and compressibility thermodynamic routes and the associated virial coefficients are computed. The pressure calculated from all routes is exact up to third density order, but it deviates with respect to simulation data as density increases, the compressibility and the chemical-potential routes exhibiting smaller deviations than the virial route. Accurate linear interpolations between the compressibility route and either the chemical-potential route or the virial one are constructed.
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا