ﻻ يوجد ملخص باللغة العربية
We use the Percus-Yevick approach in the chemical-potential route to evaluate the equation of state of hard hyperspheres in five dimensions. The evaluation requires the derivation of an analytical expression for the contact value of the pair distribution function between particles of the bulk fluid and a solute particle with arbitrary size. The equation of state is compared with those obtained from the conventional virial and compressibility thermodynamic routes and the associated virial coefficients are computed. The pressure calculated from all routes is exact up to third density order, but it deviates with respect to simulation data as density increases, the compressibility and the chemical-potential routes exhibiting smaller deviations than the virial route. Accurate linear interpolations between the compressibility route and either the chemical-potential route or the virial one are constructed.
The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixture
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E textbf{83}, 011201 (2011)]. It
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a co
Following the work of Leutheusser [Physica A 127, 667 (1984)], the solution to the Percus-Yevick equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of the equation of state for the fluid taking both the
The equilibrium properties of a Janus fluid confined to a one-dimensional channel are exactly derived. The fluid is made of particles with two faces (active and passive), so that the pair interaction is that of hard spheres, except if the two active