ترغب بنشر مسار تعليمي؟ اضغط هنا

Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

74   0   0.0 ( 0 )
 نشر من قبل Lutz Brusch
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.



قيم البحث

اقرأ أيضاً

Spiral and antispiral waves are studied numerically in two examples of oscillatory reaction-diffusion media and analytically in the corresponding complex Ginzburg-Landau equation (CGLE). We argue that both these structures are sources of waves in osc illatory media, which are distinguished only by the sign of the phase velocity of the emitted waves. Using known analytical results in the CGLE, we obtain a criterion for the CGLE coefficients that predicts whether antispirals or spirals will occur in the corresponding reaction-diffusion systems. We apply this criterion to the FitzHugh-Nagumo and Brusselator models by deriving the CGLE near the Hopf bifurcations of the respective equations. Numerical simulations of the full reaction-diffusion equations confirm the validity of our simple criterion near the onset of oscillations. They also reveal that antispirals often occur near the onset and turn into spirals further away from it. The transition from antispirals to spirals is characterized by a divergence in the wavelength. A tentative interpretaion of recent experimental observations of antispiral waves in the Belousov-Zhabotinsky reaction in a microemulsion is given.
We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass.
We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal pa rameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains.
We show that the one dimensional discrete nonlinear Schrodinger chain (DNLS) at finite temperature has three different dynamical regimes (ultra-low, low and high temperature regimes). This has been established via (i) one point macroscopic thermodyna mic observables (temperature $T$ , energy density $epsilon$ and the relationship between them), (ii) emergence and disappearance of an additional almost conserved quantity (total phase difference) and (iii) classical out-of-time-ordered correlators (OTOC) and related quantities (butterfly speed and Lyapunov exponents). The crossover temperatures $T_{textit{l-ul}}$ (between low and ultra-low temperature regimes) and $T_{textit{h-l}}$ (between high and low temperature regimes) extracted from these three different approaches are consistent with each other. The analysis presented here is an important step forward towards the understanding of DNLS which is ubiquitous in many fields and has a non-separable Hamiltonian form. Our work also shows that the different methods used here can serve as important tools to identify dynamical regimes in other interacting many body systems.
A horizontal flow of two immiscible fluid layers with different densities, viscosities and thicknesses, subject to vertical gravitational forces and with an insoluble surfactant present at the interface, is investigated. The base Couette flow is driv en by the horizontal motion of the channel walls. Linear and nonlinear stages of the (inertialess) surfactant and gravity dependent long-wave instability are studied using the lubrication approximation, which leads to a system of coupled nonlinear evolution equations for the interface and surfactant disturbances. The linear stability is determined by an eigenvalue problem for the normal modes. The growth rates and the amplitudes of disturbances of the interface, surfactant, velocities, and pressures are found analytically. For each wavenumber, there are two active normal modes. For each mode, the instability threshold conditions in terms of the system parameters are determined. In particular, it transpires that for certain parametric ranges, even arbitrarily strong gravity cannot completely stabilize the flow. The correlations of vorticity-thickness phase differences with instability, present when the gravitational effects are neglected, are found to break down when gravity is important. The physical mechanisms of instability for the two modes are explained with vorticity playing no role in them. Unlike the semi-infinite case that we previously studied, a small-amplitude nonlinear saturation of the surfactant instability is possible in the absence of gravity. For certain parametric ranges, the interface deflection is governed by a decoupled Kuramoto-Sivashinsky equation, which provides a source term for a linear convection-diffusion equation governing the surfactant concentration. The full numerics confirm the prediction that, along with the interface, the surfactant wave is chaotic, but the ratio of the two chaotic waves is constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا