ترغب بنشر مسار تعليمي؟ اضغط هنا

Surmounting collectively oscillating bottlenecks

129   0   0.0 ( 0 )
 نشر من قبل Dirk Hennig
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal parameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains.



قيم البحث

اقرأ أيضاً

The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines supercon ductors, charge density waves, and transport processes of macromolecules, to name but a few. The underlying activated processes present the multidimensional extension of the Kramers problem of a single Brownian particle. In comparison to the latter case, however, the dynamics ensuing from the interactions of many coupled units can lead to intriguing novel phenomena that are not present when only a single degree of freedom is involved. In this review we report on a variety of such phenomena that are exhibited by systems consisting of chains of interacting units in the presence of potential barriers. In the first part we consider recent developments in the case of a deterministic dynamics driving cooperative escape processes of coupled nonlinear units out of metastable states. The ability of chains of coupled units to undergo spontaneous conformational transitions can lead to a self-organised escape. The mechanism at work is that the energies of the units become re-arranged, while keeping the total energy conserved, in forming localised energy modes that in turn trigger the cooperative escape. We present scenarios of significantly enhanced noise-free escape rates if compared to the noise-assisted case. The second part deals with the collective directed transport of systems of interacting particles overcoming energetic barriers in periodic potential landscapes. Escape processes in both time-homogeneous and time-dependent driven systems are considered for the emergence of directed motion. It is shown that ballistic channels immersed in the associated high-dimensional phase space are the source for the directed long-range transport.
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.
We study the flux of totally asymmetric simple exclusion processes (TASEPs) on a twin co-axial square tracks. In this biologically motivated model the particles in each track act as mobile bottlenecks against the movement of the particles in the othe r although the particle are not allowed to move out of their respective tracks. So far as the outer track is concerned, the particles on the inner track act as bottlenecks only over a set of fixed segments of the outer track, in contrast to site-associated and particle-associated quenched randomness in the earlier models of disordered TASEP. In a special limiting situation the movement of particles in the outer track mimic a TASEP with a point-like immobile (i.e., quenched) defect where phase segregation of the particles is known to take place. The length of the inner track as well as the strength and number density of the mobile bottlenecks moving on it are the control parameters that determine the nature of spatio-temporal organization of particles on the outer track. Variation of these control parameters allow variation of the width of the phase-coexistence region on the flux-density plane of the outer track. Some of these phenomena are likely to survive even in the future extensions intended for studying traffic-like collective phenomena of polymerase motors on double-stranded DNA.
Finding the causes for the nonstatistical vibrational energy relaxation in the planar carbonyl sulfide (OCS) molecule is a longstanding problem in chemical physics: Not only is the relaxation incomplete long past the predicted statistical relaxation time, but it also consists of a sequence of abrupt transitions between long-lived regions of localized energy modes. We report on the phase space bottlenecks responsible for this slow and uneven vibrational energy flow in this Hamiltonian system with three degrees of freedom. They belong to a particular class of two-dimensional invariant tori which are organized around elliptic periodic orbits. We relate the trapping and transition mechanisms with the linear stability of these structures.
Two distinct transition points have been observed in a problem of lattice percolation studied using a system of pulsating discs. Sites on a regular lattice are occupied by circular discs whose radii vary sinusoidally within $[0,R_0]$ starting from a random distribution of phase angles. A lattice bond is said to be connected when its two end discs overlap with each other. Depending on the difference of the phase angles of these discs a bond may be termed as dead or live. While a dead bond can never be connected, a live bond is connected at least once in a complete time period. Two different time scales can be associated with such a system, leading to two transition points. Namely, a percolation transition occurs at $R_{0c} =0.908$ when a spanning cluster of connected bonds emerges in the system. Here, information propagates across the system instantly, i.e., with infinite speed. Secondly, there exists another transition point $R_0^* = 0.5907$ where the giant cluster of live bonds spans the lattice. In this case the information takes finite time to propagate across the system through the dynamical evolution of finite size clusters. This passage time diverges as $R_0 to R_0^*$ from above. Both the transitions exhibit the critical behavior of ordinary percolation transition. The entire scenario is robust with respect to the distribution of frequencies of the individual discs. This study may be relevant in the context of wireless sensor networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا